I currently deal with the data using fgls. I have a question that is there any problems if "estimated covariances" is equal to"number of groups". My instructor told me that "there is the repeated variables in my data, for example the variable gdp of export and import countries". Please advise. Thank you very much
Here is the descriptive:
. sum exportvalue gdp1 gdp2 lpi1 lpi2 elpi1 elpi2 regulatoryquality politicalstability distance commonborder
Variable | Obs Mean Std. dev. Min Max
-------------+---------------------------------------------------------
exportvalue | 540 3.69e+09 7.72e+09 191.739 5.28e+10
gdp1 | 540 2.56e+11 2.58e+11 9.91e+09 1.12e+12
gdp2 | 540 2.56e+11 2.58e+11 9.91e+09 1.12e+12
lpi1 | 540 3.021099 .5229104 2.06725 4.3
lpi2 | 540 3.021099 .5229104 2.06725 4.3
-------------+---------------------------------------------------------
elpi1lpilci | 540 39429.11 53627.14 8418.875 276955.3
elpi2 | 540 39429.11 53627.14 8418.875 276955.3
regulatory~y | 540 .0354467 .9635217 -2.244581 2.22636
politicals~y | 540 -.0812727 .8993196 -2.211743 1.477469
distance | 540 1637.217 719.7744 314.706 3089.79
-------------+---------------------------------------------------------
commonborder | 540 .2444444 .4301558 0 1
And here is the result of FGLS:
Cross-sectional time-series FGLS regression
Coefficients: generalized least squares
Panels: heteroskedastic
Correlation: common AR(1) coefficient for all panels (0.7488)
Estimated covariances = 90 Number of obs = 540
Estimated autocorrelations = 1 Number of groups = 90
Estimated coefficients = 9 Time periods = 6
Wald chi2(8) = 2056.81
Prob > chi2 = 0.0000
------------------------------------------------------------------------------------
lnexp | Coefficient Std. err. z P>|z| [95% conf. interval]
-------------------+----------------------------------------------------------------
lngdpex | 1.11632 .0443255 25.18 0.000 1.029443 1.203196
lngdpim | .8699424 .0348179 24.99 0.000 .8017005 .9381842
lndis | -1.235037 .0858691 -14.38 0.000 -1.403338 -1.066737
lnelpi1 | .4750061 .0458459 10.36 0.000 .3851498 .5648625
lnelpi2 | .1907061 .0524039 3.64 0.000 .0879963 .2934159
regulatoryquality | .1550171 .054814 2.83 0.005 .0475837 .2624505
politicalstability | -.1463815 .0433558 -3.38 0.001 -.2313573 -.0614058
commonborder | .6490318 .1101282 5.89 0.000 .4331844 .8648792
_cons | -28.31576 1.436243 -19.72 0.000 -31.13074 -25.50077
------------------------------------------------------------------------------------
Here is the descriptive:
. sum exportvalue gdp1 gdp2 lpi1 lpi2 elpi1 elpi2 regulatoryquality politicalstability distance commonborder
Variable | Obs Mean Std. dev. Min Max
-------------+---------------------------------------------------------
exportvalue | 540 3.69e+09 7.72e+09 191.739 5.28e+10
gdp1 | 540 2.56e+11 2.58e+11 9.91e+09 1.12e+12
gdp2 | 540 2.56e+11 2.58e+11 9.91e+09 1.12e+12
lpi1 | 540 3.021099 .5229104 2.06725 4.3
lpi2 | 540 3.021099 .5229104 2.06725 4.3
-------------+---------------------------------------------------------
elpi1lpilci | 540 39429.11 53627.14 8418.875 276955.3
elpi2 | 540 39429.11 53627.14 8418.875 276955.3
regulatory~y | 540 .0354467 .9635217 -2.244581 2.22636
politicals~y | 540 -.0812727 .8993196 -2.211743 1.477469
distance | 540 1637.217 719.7744 314.706 3089.79
-------------+---------------------------------------------------------
commonborder | 540 .2444444 .4301558 0 1
And here is the result of FGLS:
Cross-sectional time-series FGLS regression
Coefficients: generalized least squares
Panels: heteroskedastic
Correlation: common AR(1) coefficient for all panels (0.7488)
Estimated covariances = 90 Number of obs = 540
Estimated autocorrelations = 1 Number of groups = 90
Estimated coefficients = 9 Time periods = 6
Wald chi2(8) = 2056.81
Prob > chi2 = 0.0000
------------------------------------------------------------------------------------
lnexp | Coefficient Std. err. z P>|z| [95% conf. interval]
-------------------+----------------------------------------------------------------
lngdpex | 1.11632 .0443255 25.18 0.000 1.029443 1.203196
lngdpim | .8699424 .0348179 24.99 0.000 .8017005 .9381842
lndis | -1.235037 .0858691 -14.38 0.000 -1.403338 -1.066737
lnelpi1 | .4750061 .0458459 10.36 0.000 .3851498 .5648625
lnelpi2 | .1907061 .0524039 3.64 0.000 .0879963 .2934159
regulatoryquality | .1550171 .054814 2.83 0.005 .0475837 .2624505
politicalstability | -.1463815 .0433558 -3.38 0.001 -.2313573 -.0614058
commonborder | .6490318 .1101282 5.89 0.000 .4331844 .8648792
_cons | -28.31576 1.436243 -19.72 0.000 -31.13074 -25.50077
------------------------------------------------------------------------------------
Comment