Hi
I have a daily dataset with no weekends and a few excluded dates. Every year there are about 8 events. I have a variable, labelled "loop", coded as 0 on the event day and it takes values such as -1,-2, etc. for days before the event and 1,2, etc. for days after the event. The loop variable should go from -6 to 33 around the event date however as the event dates change sometimes, it can takes values less than that. For example, loop can be from -1 to 10 around an event as the next event date is closer than usual.
I want to estimate a regression of variable Y on X and get the coefficient and t statistics/or significance intervals for a window that starts two days before any day on the loop variable and ends two days after. Therefore, there should be only 40 regressions, one for each day pertaining to the loop variable using the 5-day window as described.
Therefore, another way to think about it is that I have 40 events "assuming that each day of the loop is an event" and want to estimate regressions for each of those "events" using a 5 day window from 2 days before to 2 days after the event.
I hope someone can help with that.
Here is the data
I have a daily dataset with no weekends and a few excluded dates. Every year there are about 8 events. I have a variable, labelled "loop", coded as 0 on the event day and it takes values such as -1,-2, etc. for days before the event and 1,2, etc. for days after the event. The loop variable should go from -6 to 33 around the event date however as the event dates change sometimes, it can takes values less than that. For example, loop can be from -1 to 10 around an event as the next event date is closer than usual.
I want to estimate a regression of variable Y on X and get the coefficient and t statistics/or significance intervals for a window that starts two days before any day on the loop variable and ends two days after. Therefore, there should be only 40 regressions, one for each day pertaining to the loop variable using the 5-day window as described.
Therefore, another way to think about it is that I have 40 events "assuming that each day of the loop is an event" and want to estimate regressions for each of those "events" using a 5 day window from 2 days before to 2 days after the event.
I hope someone can help with that.
Here is the data
Code:
* Example generated by -dataex-. To install: ssc install dataex clear input double(date loop Y X) 12421 9 .40833064556100585 . 12422 10 1.7504380481915494 . 12423 11 1.3442199171612046 1.1142340930694614 12424 12 1.172214576405528 .8366815842332993 12425 13 1.0709235971502196 -.5698582708671603 12428 14 1.060860025764998 .44619780930879466 12429 15 -.0717033848796067 .603466848487165 12430 16 .1886515469692096 .20029839951941084 12431 17 .06841567317243946 .26156506181061856 12432 18 .44950582513105797 .7234289144089658 12435 19 -.0706365931515518 .9296635336682627 12436 20 -.2911380165270039 2.456222851925734 12437 21 -.6499041454174792 5.694674390555773 12438 22 -.16246315062454775 .9643535617024777 12439 23 .40569156604426393 1.5043988731429845 12442 24 .8780598716288113 1.3668928340199311 12443 25 1.932645839372804 -.26166523791799196 12444 26 1.9121746000000828 1.3423224530024678 12445 -6 1.9324681898750695 .3301592082916583 12446 -5 .9306850585091286 3.31895119973687 12449 -4 -1.8244805771757688 .767298012854508 12450 -3 -2.0588482667276753 -2.121362539935701 12451 -2 -1.7345886658457155 2.127378792039226 12452 -1 -1.7247998017700272 -4.534862103767482 12453 0 -2.17802071078379 .059393679617856535 12456 1 .17645332480213938 -.19192401922494884 12457 2 -.0433065317360537 -6.300753755400369 12458 3 .3764865559312769 -1.5337402402938907 12459 4 -.0034396706450223746 3.067362100583561 12460 5 .20806243874404995 2.1066805077527038 12463 6 -.30306966582031025 -.7991202944618075 12464 7 -.41261880445961907 1.6796374960179323 12465 8 -.2539716791640778 -.007249956236526354 12466 9 -.45341014827258164 -5.4905658996127205 12467 10 -1.2437243680603505 .9070158491607397 12470 11 -.4098913112849045 . 12471 12 -.03132676347357144 -.3136421468738003 12472 13 -1.1742794106360144 .2844228420773084 12473 14 -1.1643888153161752 1.9248449336488016 12474 15 -.15304185513137503 1.9817014126865398 12477 16 -.053511280049090004 .692597550533921 12478 17 .1257932143570839 1.3725805193035667 12479 18 .4178155063435218 .4920659310490232 12480 19 .7095454460085415 2.944231776068673 12481 20 .325746045762787 1.719804856260731 12484 21 .3057632019275447 .39698489334907644 12485 22 .036316824911430956 3.968928189570995 12486 23 .2971358751473252 .4925379424625736 12487 24 .6978752105955888 -.14209078275306575 12488 25 1.6305182817657693 5.119749079875876 12491 -6 1.2357097420706786 .7321162417174153 12492 -5 .4378829665795614 .1867299344584854 12493 -4 .4479285369523023 9.393819782584274 12494 -3 -.08173389457420965 -1.229264138215256 12495 -2 -1.3574756017802336 -1.93509210792755 12498 -1 -2.018372860879014 .5931807835466785 12499 0 -1.9888161304031704 1.5030996988125025 12500 1 -3.7923882734641756 .6710868287031964 12501 2 -5.293532732221129 5.283346988344717 12502 3 -4.480144012470322 -.8536996551767804 12505 4 -3.8834577775936796 -.3057341132681399 12506 5 -4.955864221877693 .9954846980862985 12507 6 -.9183101626907386 1.841555638313738 12508 7 .6520254681110282 .6081061830106048 12509 8 1.388063719674748 . 12512 9 .5665610347746153 -.5417515075925026 12513 10 2.5192996692225744 1.1784468927139873 12514 11 -.39653590939376926 . 12515 12 -1.0341656615456496 .2167469963580361 12516 13 -1.5853819996759833 .23099803515373485 12519 14 -.7514731274653075 .6531313020333248 12520 15 -1.8897208455712633 .9140979853089712 12521 16 -1.6133623327793112 .31024002158664055 12522 17 -1.4251730488087144 1.675301430510085 12523 18 -.015313038351183472 1.146840336801559 12526 19 -.09532159991209044 .9510022512827321 12527 20 1.7390025491301975 .9399939408462611 12528 21 2.055388819049453 .4118700220858298 12529 22 2.4857160622088204 .08062457545650156 12530 23 .4446623561720875 .5634462619069002 12533 24 .9674540661588571 .9292694385370084 12534 25 .46740688576560885 .6030849705715844 12535 26 .40713498167053164 . 12536 27 .256498324538601 1.1292072530338413 12537 28 .7104222740167865 .009673898215755353 12540 29 -.673701520292902 .7738292332602551 12541 30 -2.394422800262941 .9373607037318985 12542 31 -1.8083685306032438 -.38058296688195253 12543 32 -2.7038038574019874 1.7051886646059087 12544 33 -2.2360243985528605 1.9587793600933983 12547 -6 -1.2981600052189846 .3334241972883007 12548 -5 -.21813962757157856 2.033909753895595 12549 -4 .00022444076535066415 -.18217615344710394 12550 -3 2.2150168663573444 1.061018322106444 12551 -2 2.449358327653983 .4690801513532031 12554 -1 2.1624478684972637 .7107077496520608 12555 0 1.9883917704687226 .4333344114082396 12556 1 1.5733558221847854 1.1688861491174312 12557 2 .7090757906687895 2.1718633790100044 12558 3 .3284749621768279 2.2110628210759873 end format %td date
Comment