Hello everyone. I want to study the impact of a reform occured in 2014 on a series of binary outcomes using DD strategy.
For simplicity I'll show you an example of my dataset without controls so I that I can ask whether the model I coded is correct or not.
"d1" is my group variable: d1 = 1 if the unit is treated, 0 otherwise.
"time" is a dummy such that:
So far I coded:
First of all I want to perform a plain DD without any cluster nor fixed effects, hence I coded:
Then, I want to add FEs and cluster:
1) Should my time variable be "year" or "time"?
2) Should I control for year fixed effects or time (defined exactly as I defined the variable "time" in my dataset)? I guess this depends on my time variable, right?
3) Should I use the code I typed earlier to perform a DD or is this better:
Thanks a lot!
For simplicity I'll show you an example of my dataset without controls so I that I can ask whether the model I coded is correct or not.
"d1" is my group variable: d1 = 1 if the unit is treated, 0 otherwise.
"time" is a dummy such that:
Code:
time = 1 if year >= 2014 time = 0 if year < 2014
Code:
* Example generated by -dataex-. For more info, type help dataex clear input str16 id int year byte outcome float(d1 time pwght) int psu "0020090000030101" 2009 1 0 0 779.5 2 "0020180555630101" 2018 0 1 1 138.7 114 "0020180555600101" 2018 0 1 1 790.2 23 "0020180555570101" 2018 1 0 1 714.6 6 "0020150535800101" 2015 0 1 1 239.1 2 "0020120050600103" 2012 0 0 0 142.5 1 "0020170049010101" 2017 0 1 1 366.5 61 "0020120121400101" 2012 0 0 0 637.9 1 "0020130172240101" 2013 0 0 0 371.7 2 "0020120118210101" 2012 0 0 0 410.7 1 "0020180555340101" 2018 0 1 1 246.9 74 "0020140816720101" 2014 0 0 1 367.9 2 "0020100252210101" 2010 0 0 0 313.4 2 "0020180469970102" 2018 0 0 1 432 29 "0020110394270101" 2011 0 0 0 211.2 2 "0020120260720101" 2012 0 1 0 334.4 2 "0020160246150101" 2016 0 0 1 88.1 5 "0020110576340101" 2011 0 0 0 687.8 2 "0020180555140102" 2018 0 0 1 562.9 31 "0020140477650101" 2014 0 0 1 77.8 2 "0020130677130101" 2013 0 1 0 495.6 1 "0020120806010101" 2012 0 0 0 201 2 "0020160675090101" 2016 0 0 1 700.1 61 "0020100075250102" 2010 0 0 0 152.4 1 "0020110061240102" 2011 0 0 0 257.2 1 "0020180367070102" 2018 0 0 1 473.1 3 "0020150057500102" 2015 0 0 1 75.1 1 "0020180554930101" 2018 0 0 1 693.8 89 "0020180072240101" 2018 0 0 1 408.5 2 "0020170036690101" 2017 0 0 1 291.5 42 "0020140031390101" 2014 0 0 1 222.4 2 "0020110654250101" 2011 0 0 0 240.3 2 "0020110481240101" 2011 0 0 0 207.4 1 "0020120711030101" 2012 0 0 0 153.5 2 "0020180303640101" 2018 0 0 1 352 102 "0020120217660102" 2012 0 0 0 364.4 2 "0020160165890103" 2016 0 0 1 240.4 8 "0020100216650102" 2010 0 0 0 321.3 1 "0020180554740102" 2018 0 0 1 934.7 6 "0020180554700101" 2018 0 0 1 694.8 26 "0020170213230101" 2017 0 0 1 360.9 3 "0020160174310101" 2016 0 0 1 83.6 17 "0020090149770101" 2009 0 0 0 254.6 1 "0020130668530102" 2013 0 0 0 74.5 1 "0020120218340101" 2012 0 0 0 228.1 1 "0020110645430102" 2011 0 0 0 516.7 1 "0020090030940201" 2009 0 0 0 797.6 1 "0020120698250102" 2012 0 1 0 221.4 2 "0020100469160101" 2010 0 0 0 486.9 2 "0020150272400102" 2015 0 1 1 260.5 2 "0020150157210101" 2015 0 0 1 162.4 2 "0020130043100102" 2013 0 0 0 628.8 2 "0020140785230102" 2014 0 1 1 13.2 1 "0020090421790102" 2009 0 0 0 249.6 2 "0020120150250101" 2012 1 1 0 845.6 1 "0020120506470101" 2012 0 0 0 280.5 2 "0020130111800101" 2013 0 1 0 101.4 2 "0020120187490101" 2012 0 0 0 469.8 1 "0020150372290101" 2015 0 0 1 223.7 2 "0020100590830101" 2010 0 0 0 267.8 1 "0020110072060101" 2011 0 0 0 489.3 1 "0020140792010102" 2014 0 0 1 247.3 2 "0020140721050101" 2014 0 0 1 196.3 1 "0020090023250102" 2009 0 1 0 1065.3 2 "0020090514690102" 2009 1 0 0 157.4 2 "0020180357200101" 2018 0 0 1 317.2 23 "0020180554090103" 2018 0 0 1 694.1 4 "0020120151530101" 2012 0 0 0 421.4 1 "0020100317120103" 2010 1 0 0 462.5 2 "0020140096890201" 2014 0 0 1 58.8 2 "0020110410240101" 2011 1 0 0 548.3 2 "0020110222130101" 2011 0 0 0 283.9 2 "0020090292240101" 2009 1 1 0 549.5 2 "0020090143760101" 2009 0 0 0 459.4 1 "0020110053070101" 2011 0 0 0 251.3 2 "0020090121830101" 2009 0 0 0 180.6 2 "0020180553970101" 2018 0 1 1 542.8 7 "0020180313260102" 2018 0 0 1 472.7 21 "0020110007460101" 2011 0 0 0 361.9 1 "0020180553910102" 2018 0 0 1 1016.1 2 "0020120336790102" 2012 0 0 0 159.2 1 "0020150256350102" 2015 0 0 1 32.4 2 "0020160336000101" 2016 0 0 1 162.5 2 "0020170120080101" 2017 0 0 1 388.2 19 "0020150054010103" 2015 0 0 1 200.4 1 "0020170422730101" 2017 0 0 1 538.4 34 "0020100598680101" 2010 0 0 0 159.5 2 "0020100514410102" 2010 0 0 0 215.5 2 "0020110307350101" 2011 0 0 0 200.5 1 "0020150393090101" 2015 0 0 1 308.4 2 "0020100343370101" 2010 0 1 0 150.6 1 "0020180525720101" 2018 0 0 1 657.1 3 "0020130247650101" 2013 1 1 0 247.8 1 "0020090056300101" 2009 0 0 0 349.2 1 "0020110577230101" 2011 0 0 0 527 1 "0020160395150101" 2016 0 1 1 376.6 33 "0020180553540101" 2018 0 0 1 693.3 22 "0020180405630101" 2018 0 0 1 325.2 8 "0020110004910101" 2011 0 0 0 302.2 1 "0020150743510101" 2015 0 1 1 275.1 1 end
So far I coded:
Code:
gen time = 0 if year < 2014 replace time = 1 if year >= 2014 gen treatment = d1 * time global y outcome global treatment treatment global time time global group d1
First of all I want to perform a plain DD without any cluster nor fixed effects, hence I coded:
Code:
reg $y i.treatment [pweight=pwght]
Then, I want to add FEs and cluster:
Code:
reg $y i.treatment i.d1 i.time [pweight=pwght], vce(cluster psu)
2) Should I control for year fixed effects or time (defined exactly as I defined the variable "time" in my dataset)? I guess this depends on my time variable, right?
3) Should I use the code I typed earlier to perform a DD or is this better:
Code:
reg $y i.time#i.d1 [pweight=pwght] reg $y i.d1##i.time [pweight=pwght], vce(cluster psu)
Thanks a lot!
Comment