Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • Interpreting marginal effect in melogit with odds ratio

    Dear Statalisters:

    I am trying to correctly interpret the results of marginal effects that are produced with melogit with odds ratio option. Attached below are the commands and results. I tell Stata to calculate marginal effects with the command "margins, dydx(i.singlemom3) at(nordic=(0(1)1)) expression(exp(predict(xb)))". Both singlemom3 and nordic are dummy variables.

    In this case, is it correct to interpret the marginal effect of singlemom3 with nordic==1 that when nordic==1, the odds ratio is .0073617, and it suggests that the odds of pov50 happening when nordic==1 are 99.3% lower? I'd like to make sure 2 things: that I'm calculating the odds ratio correctly and that I'm interpreting the meaning of .0073617 correctly.

    Thank you for your help in advance.

    Best,

    Taka

    HTML Code:
    . use pov50 age age2 educ nhhmem17 child5 nordic limatppp_L3 itotedupergdp_L3 lalmptotppp_L3 age singlemom3 cid emp_ilo using $mydata/tsakam/lis15pov.dta
    
    . melogit pov50 age age2 educ nhhmem17 child5 nordic##singlemom3 limatppp_L3 itotedupergdp_L3 lalmptotppp_L3 if age>24&age<55 & age~=.&emp_ilo==1 || cid: , or vce(cl cid)
    
    Fitting fixed-effects model:
    
    Iteration 0:   log likelihood = -359581.21  
    Iteration 1:   log likelihood = -298766.56  
    Iteration 2:   log likelihood = -297421.02  
    Iteration 3:   log likelihood = -297396.28  
    Iteration 4:   log likelihood = -297396.27  
    
    Refining starting values:
    
    Grid node 0:   log likelihood = -296811.38
    
    Fitting full model:
    
    Iteration 0:   log pseudolikelihood = -296811.38  (not concave)
    Iteration 1:   log pseudolikelihood = -296805.38  (not concave)
    Iteration 2:   log pseudolikelihood = -296799.35  (not concave)
    Iteration 3:   log pseudolikelihood = -296794.37  (not concave)
    Iteration 4:   log pseudolikelihood = -296790.26  (not concave)
    Iteration 5:   log pseudolikelihood = -296786.89  (not concave)
    Iteration 6:   log pseudolikelihood =  -296781.2  (not concave)
    Iteration 7:   log pseudolikelihood = -296778.86  (not concave)
    Iteration 8:   log pseudolikelihood = -296776.93  (not concave)
    Iteration 9:   log pseudolikelihood = -296776.13  
    Iteration 10:  log pseudolikelihood = -296735.71  
    Iteration 11:  log pseudolikelihood =  -296638.1  
    Iteration 12:  log pseudolikelihood = -296603.27  
    Iteration 13:  log pseudolikelihood =  -296603.2  
    Iteration 14:  log pseudolikelihood =  -296603.2  
    
    Mixed-effects logistic regression               Number of obs     =    2017275
    Group variable:             cid                 Number of groups  =         14
    
                                                    Obs per group:
                                                                  min =      2,091
                                                                  avg =  144,091.1
                                                                  max =    748,229
    
    Integration method: mvaghermite                 Integration pts.  =          7
    
                                                    Wald chi2(11)     =  987786.79
    Log pseudolikelihood =  -296603.2               Prob > chi2       =     0.0000
                                            (Std. Err. adjusted for 14 clusters in cid)
    -----------------------------------------------------------------------------------
                      |               Robust
                pov50 | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval]
    ------------------+----------------------------------------------------------------
                  age |   .8267114   .0442137    -3.56   0.000     .7444413    .9180733
                 age2 |   1.002135   .0005695     3.75   0.000     1.001019    1.003251
                 educ |   .5662244   .0347937    -9.26   0.000     .5019766    .6386952
             nhhmem17 |   1.159116   .0329424     5.20   0.000     1.096316    1.225514
               child5 |   1.028166    .106204     0.27   0.788     .8397282     1.25889
             1.nordic |   .3562969   .0983028    -3.74   0.000     .2074743    .6118709
         1.singlemom3 |   4.729612   .7387682     9.95   0.000     3.482309    6.423677
                      |
    nordic#singlemom3 |
                 1 1  |    .315331   .0472083    -7.71   0.000     .2351436    .4228635
                      |
          limatppp_L3 |   1.065768   .0688701     0.99   0.324     .9389829    1.209671
     itotedupergdp_L3 |   1.114404   .0699055     1.73   0.084       .98548    1.260195
       lalmptotppp_L3 |   1.032103    .054843     0.59   0.552     .9300204     1.14539
                _cons |   1.626621   1.818156     0.44   0.663     .1819097    14.54511
    ------------------+----------------------------------------------------------------
    cid               |
            var(_cons)|   .0814162   .0573185                      .0204857    .3235727
    -----------------------------------------------------------------------------------
    Note: Estimates are transformed only in the first equation.
    Note: _cons estimates baseline odds (conditional on zero random effects).
    
    . margins, dydx(i.singlemom3) at(nordic=(0(1)1)) expression(exp(predict(xb)))
    
    Average marginal effects                        Number of obs     =  2,017,275
    Model VCE    : Robust
    
    Expression   : exp(predict(xb))
    dy/dx w.r.t. : 1.singlemom3
    
    1._at        : nordic          =           0
    
    2._at        : nordic          =           1
    
    -------------------------------------------------------------------------------
                  |            Delta-method
                  |      dy/dx   Std. Err.      z    P>|z|     [95% Conf. Interval]
    --------------+----------------------------------------------------------------
    0.singlemom3  |  (base outcome)
    --------------+----------------------------------------------------------------
    1.singlemom3  |
              _at |
               1  |   .1568204   .0401026     3.91   0.000     .0782208    .2354199
               2  |   .0073617    .001456     5.06   0.000      .004508    .0102154
    -------------------------------------------------------------------------------
    Note: dy/dx for factor levels is the discrete change from the base level.
    
    . 
    end of do-file
Working...
X