Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • Constant difference, why?

    Dear Stata users,

    I am a novice stata user, so this could be a silly question.

    I am trying to estimate the one-way fixed effect estimator using Grunfeld data. It includes investment data for 10 firms from 1935 to 1954.

    First, I tried to estimate the estimator without using 'xtreg' as follows

    '
    Code:
    * Use Grunfeld data
    import excel using "Grunfeld.xlsx", firstrow
    xtset firm year
    
    ***** Balanced Case *****
    *** One-Way ***
    * Fixed Effect Regression *
    egen inv_mean1 = mean(inv), by(firm)
    gen inv_dot = inv - inv_mean1
    
    egen value_mean1 = mean(value), by(firm)
    gen value_dot = value - value_mean1
    
    egen capital_mean1 = mean(capital), by(firm)
    gen capital_dot = capital - capital_mean1
    
    reg inv_dot value_dot capital_dot, vce(cl firm)
    The result is
    Code:
    . reg inv_dot value_dot capital_dot, vce(cl firm)
    
    Linear regression                               Number of obs     =   
    >      200
                                                    F(2, 9)           =   
    >    28.31
                                                    Prob > F          =   
    >   0.0001
                                                    R-squared         =   
    >   0.7668
                                                    Root MSE          =   
    >   51.549
    
                                      (Std. err. adjusted for 10 clusters 
    > in firm)
    ----------------------------------------------------------------------
    > --------
                 |               Robust
         inv_dot | Coefficient  std. err.      t    P>|t|     [95% conf. i
    > nterval]
    -------------+--------------------------------------------------------
    > --------
       value_dot |   .1101238   .0151945     7.25   0.000     .0757515    
    > .1444961
     capital_dot |   .3100653   .0527518     5.88   0.000     .1907325    
    > .4293981
           _cons |  -7.49e-08   1.74e-06    -0.04   0.967    -4.00e-06    
    > 3.85e-06
    ----------------------------------------------------------------------
    When I regress using 'xtreg', the result of constant term is different.
    Code:
    . xtreg inv value capital, fe vce(cl firm)
    
    Fixed-effects (within) regression               Number of obs     =   
    >      200
    Group variable: firm                            Number of groups  =   
    >       10
    
    R-squared:                                      Obs per group:
         Within  = 0.7668                                         min =   
    >       20
         Between = 0.8194                                         avg =   
    >     20.0
         Overall = 0.8060                                         max =   
    >       20
    
                                                    F(2, 9)           =   
    >    28.31
    corr(u_i, Xb) = -0.1517                         Prob > F          =   
    >   0.0001
    
                                      (Std. err. adjusted for 10 clusters 
    > in firm)
    ----------------------------------------------------------------------
    > --------
                 |               Robust
             inv | Coefficient  std. err.      t    P>|t|     [95% conf. i
    > nterval]
    -------------+--------------------------------------------------------
    > --------
           value |   .1101238   .0151945     7.25   0.000     .0757515    
    > .1444961
         capital |   .3100653   .0527518     5.88   0.000     .1907325    
    > .4293981
           _cons |  -58.74394   27.60286    -2.13   0.062     -121.186    
    > 3.698079
    -------------+--------------------------------------------------------
    > --------
         sigma_u |  85.732502
         sigma_e |  52.767966
             rho |  .72525011   (fraction of variance due to u_i)
    ----------------------------------------------------------------------
    I don't understand why only the constant term is different from the previous one. Can someone please explain about this?

  • #2
    You cannot separate the constant from the fixed effects, and therefore, the estimates of the constant terms are meaningless in FE models. See https://www.stata.com/support/faqs/s...effects-model/

    Comment


    • #3
      I agreed with Andrew Musau.
      In models with high order fixed effects, the constant is not identified. However, you could "recover" it, by adding the "grand mean" to all your variables.
      See the example below

      Code:
      webuse grunfeld, clear
      ren company firm
      ren invest inv
      ren mvalue value
      ren kstock capital
      
      
      egen inv_mean1 = mean(inv), by(firm)
      gen inv_dot = inv - inv_mean1
      egen value_mean1 = mean(value), by(firm)
      gen value_dot = value - value_mean1
      egen capital_mean1 = mean(capital), by(firm)
      gen capital_dot = capital - capital_mean1
      
      
      reg inv_dot value_dot capital_dot, vce(cl firm)
      // Adding grand mean
      sum inv, meanonly
      replace inv_dot = inv_dot + r(mean)
      sum value, meanonly
      
      replace value_dot = value_dot + r(mean)
      sum capital, meanonly
      replace capital_dot = capital_dot + r(mean)
      
      reg inv_dot value_dot capital_dot, vce(cl firm)
      
      
      . reg inv_dot value_dot capital_dot, vce(cl firm)
      
      Linear regression                               Number of obs     =        200
                                                      F(1, 9)           =          .
                                                      Prob > F          =          .
                                                      R-squared         =     0.7668
                                                      Root MSE          =     51.549
      
                                        (Std. err. adjusted for 10 clusters in firm)
      ------------------------------------------------------------------------------
                   |               Robust
           inv_dot | Coefficient  std. err.      t    P>|t|     [95% conf. interval]
      -------------+----------------------------------------------------------------
         value_dot |   .1101238   .0151945     7.25   0.000     .0757515    .1444961
       capital_dot |   .3100653   .0527518     5.88   0.000     .1907325    .4293982
             _cons |  -58.74393   27.60286    -2.13   0.062    -121.1859    3.698081
      ------------------------------------------------------------------------------

      Comment


      • #4
        Dear Musau and FernandoRios, I appreciate it!

        Comment

        Working...
        X