Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • logit not converging

    I am running a logit regression- logit roads_any_project_LS c.Roads_index#i.Constituency i.Constituency, r cluster(BLOCK) noconstant
    and after 300 iterations, I am getting the message "convergence not achieved". I need constituency-level coefficient estimates, hence an interaction term. I am not able to understand why am I getting this issue and how to solve it? Any suggestions/comments are welcome. My aim is to get the constituency-level coefficient estimates, any suggestion for other models are also welcome.

    My dependent variable is a binary variable. It has the following distribution.

    . sum roads_any_project_LS

    Variable | Obs Mean Std. Dev. Min Max
    -------------+---------------------------------------------------------
    roads_any~LS | 390,103 .0183208 .1341089 0 1


    I have data on 314 constituencies (390,103 villages), and all have at least one village where the dependent variable takes value 1. When I look at the constituency level distribution, there are 20 constituencies with only one village (out of more than 1000 villages) have received projects. Mean number of villages having dependent variable value 1 are 29 and its std deviation is 35.


    Logistic regression Number of obs = 390,103
    Wald chi2(626) = .
    Log pseudolikelihood = -30721.741 Prob > chi2 = .

    (Std. Err. adjusted for 4,769 clusters in BLOCK)
    --------------------------------------------------------------------------------------------
    | Robust
    roads_any_project_LS | Coef. Std. Err. z P>|z| [95% Conf. Interval]
    ---------------------------+----------------------------------------------------------------
    Constituency#c.Roads_index |
    1 | -.6608474 .0655114 -10.09 0.000 -.7892472 -.5324475
    2 | .4458982 .1757362 2.54 0.011 .1014615 .7903348
    3 | .2181932 .2257075 0.97 0.334 -.2241854 .6605719
    7 | .120353 .0694249 1.73 0.083 -.0157174 .2564233
    8 | .1958896 .2202225 0.89 0.374 -.2357387 .6275178
    9 | .1091651 .1157878 0.94 0.346 -.1177748 .3361049
    10 | .1542245 .0416943 3.70 0.000 .0725053 .2359438
    11 | .3365478 .3147167 1.07 0.285 -.2802856 .9533812
    12 | .2002518 .1097046 1.83 0.068 -.0147654 .4152689
    13 | -.0542538 .0937007 -0.58 0.563 -.2379039 .1293962
    14 | .2941955 .1803958 1.63 0.103 -.0593739 .6477648
    15 | .0977584 .0928378 1.05 0.292 -.0842003 .2797171
    16 | -.115236 .0936234 -1.23 0.218 -.2987346 .0682625
    18 | .1462729 .1154289 1.27 0.205 -.0799635 .3725093
    19 | .3670984 .0890255 4.12 0.000 .1926115 .5415852
    20 | .3560342 .1593247 2.23 0.025 .0437635 .6683048
    21 | .2354457 .1645342 1.43 0.152 -.0870353 .5579267
    22 | -.0149209 .118731 -0.13 0.900 -.2476294 .2177875
    23 | .1795492 .0820157 2.19 0.029 .0188014 .3402969
    25 | .1203832 .0581845 2.07 0.039 .0063436 .2344228
    26 | .080957 .1021105 0.79 0.428 -.1191759 .28109
    28 | .1525234 .1413528 1.08 0.281 -.124523 .4295699
    31 | .3438291 .2499364 1.38 0.169 -.1460373 .8336954
    33 | .3965649 .1451224 2.73 0.006 .1121302 .6809995
    34 | -.0766231 .139184 -0.55 0.582 -.3494187 .1961724
    35 | .488826 .3103768 1.57 0.115 -.1195014 1.097153
    36 | .0231568 .1627588 0.14 0.887 -.2958446 .3421582
    37 | 1.686467 .9838046 1.71 0.086 -.2417549 3.614688
    38 | .0299327 .5698798 0.05 0.958 -1.087011 1.146877
    39 | .7815796 .4578359 1.71 0.088 -.1157622 1.678921
    47 | .5706566 .3132112 1.82 0.068 -.0432262 1.184539
    48 | .3613716 .0437837 8.25 0.000 .2755572 .447186
    50 | .2657646 .0987458 2.69 0.007 .0722264 .4593027
    51 | .2042784 .0724962 2.82 0.005 .0621885 .3463683
    52 | -.0053896 .1571352 -0.03 0.973 -.3133689 .3025897
    55 | -.0309479 .0563627 -0.55 0.583 -.1414168 .0795209
    56 | -.0245893 .1764528 -0.14 0.889 -.3704303 .3212518
    58 | .5417619 .5237293 1.03 0.301 -.4847286 1.568252
    59 | .0808226 .0785701 1.03 0.304 -.073172 .2348172
    61 | .234522 .0791768 2.96 0.003 .0793384 .3897056
    62 | .1099259 .124271 0.88 0.376 -.1336408 .3534925
    63 | .2400244 .1537519 1.56 0.118 -.0613237 .5413725
    65 | .1866645 .1336812 1.40 0.163 -.0753457 .4486748
    66 | -.0282779 .1565299 -0.18 0.857 -.3350708 .278515
    67 | .8259951 .624605 1.32 0.186 -.3982081 2.050198
    68 | -.0599338 .1244139 -0.48 0.630 -.3037805 .183913
    70 | -.4226502 .0359109 -11.77 0.000 -.4930343 -.3522661
    71 | .3371348 .093079 3.62 0.000 .1547034 .5195662
    72 | .0569631 .1446507 0.39 0.694 -.226547 .3404732
    73 | .1970157 .0787471 2.50 0.012 .0426742 .3513572
    74 | .2106958 .1479022 1.42 0.154 -.0791871 .5005788
    75 | .0195349 .0945959 0.21 0.836 -.1658697 .2049395
    76 | .0737547 .1076251 0.69 0.493 -.1371865 .284696
    79 | -.1264817 .0873495 -1.45 0.148 -.2976837 .0447203
    80 | -.0247965 .2585267 -0.10 0.924 -.5314994 .4819065
    81 | .1180961 .1635918 0.72 0.470 -.202538 .4387301
    82 | -.0684729 .0467244 -1.47 0.143 -.1600511 .0231053
    83 | .1907104 .1266487 1.51 0.132 -.0575164 .4389372
    85 | -.1060408 .0584821 -1.81 0.070 -.2206636 .0085819
    88 | .1176512 .0885092 1.33 0.184 -.0558237 .2911261
    90 | .081203 .0650858 1.25 0.212 -.0463628 .2087689
    92 | .1148136 .1121654 1.02 0.306 -.1050266 .3346538
    93 | .4887394 .2223114 2.20 0.028 .0530171 .9244617
    94 | -.0788945 .082853 -0.95 0.341 -.2412834 .0834943
    96 | .1815226 .0724197 2.51 0.012 .0395826 .3234627
    97 | .2350458 .2695767 0.87 0.383 -.2933149 .7634064
    99 | -.0101564 .1173261 -0.09 0.931 -.2401113 .2197985
    101 | .0531907 .0916401 0.58 0.562 -.1264207 .232802
    102 | -.1600988 .142758 -1.12 0.262 -.4398993 .1197016
    103 | .078361 .1967812 0.40 0.690 -.3073231 .4640452
    104 | -.0304649 .0654481 -0.47 0.642 -.1587409 .0978111
    105 | .1232343 .0498378 2.47 0.013 .025554 .2209146
    107 | -.0260969 .0506596 -0.52 0.606 -.1253879 .0731941
    108 | -.0266757 .0937611 -0.28 0.776 -.2104441 .1570927
    109 | .4251732 .1620749 2.62 0.009 .1075121 .7428342
    111 | .5153267 .4040994 1.28 0.202 -.2766936 1.307347
    112 | .0748976 .0722194 1.04 0.300 -.0666499 .2164452
    115 | .1237639 .0739255 1.67 0.094 -.0211273 .2686552
    116 | .082045 .1538435 0.53 0.594 -.2194827 .3835726
    117 | .1235557 .147288 0.84 0.402 -.1651236 .4122349
    118 | 1.03302 .1585255 6.52 0.000 .7223156 1.343724
    120 | .4643969 .0877099 5.29 0.000 .2924886 .6363052
    121 | .1773 .143952 1.23 0.218 -.1048408 .4594408
    122 | .3590351 .2431092 1.48 0.140 -.1174501 .8355203
    123 | -.015444 .0801791 -0.19 0.847 -.1725922 .1417041
    125 | 11.58369 1.013573 11.43 0.000 9.59712 13.57025
    127 | .1546807 .1457843 1.06 0.289 -.1310513 .4404128
    128 | -.11968 .0859668 -1.39 0.164 -.2881719 .0488119
    129 | .6831128 .188329 3.63 0.000 .3139947 1.052231
    132 | -.1149689 .0600724 -1.91 0.056 -.2327088 .0027709
    133 | .1881041 .2009844 0.94 0.349 -.2058181 .5820264
    134 | -.0673733 .1162911 -0.58 0.562 -.2952998 .1605531
    135 | .3194773 .1812864 1.76 0.078 -.0358374 .6747921
    136 | .2270449 .1127692 2.01 0.044 .0060213 .4480685
    137 | .1108311 .0911032 1.22 0.224 -.0677279 .2893901
    138 | -.0302023 .0906149 -0.33 0.739 -.2078043 .1473997
    141 | -.0269314 .1594216 -0.17 0.866 -.3393919 .2855292
    142 | .1876524 .1032194 1.82 0.069 -.0146538 .3899586
    143 | .0705556 .081043 0.87 0.384 -.0882857 .2293969
    145 | .9079657 .1742489 5.21 0.000 .5664442 1.249487
    147 | -.0356222 .175612 -0.20 0.839 -.3798154 .308571
    148 | -.1684515 .1371322 -1.23 0.219 -.4372258 .1003227
    149 | .0650085 .0749801 0.87 0.386 -.0819498 .2119669
    150 | .1022375 .116453 0.88 0.380 -.1260062 .3304811
    151 | .2524813 .1113974 2.27 0.023 .0341465 .4708161
    154 | .1055224 .0442386 2.39 0.017 .0188163 .1922285
    155 | .1612263 .1032679 1.56 0.118 -.041175 .3636276
    156 | .2159575 .1807413 1.19 0.232 -.1382889 .5702039
    157 | .1493157 .0600223 2.49 0.013 .0316742 .2669572
    158 | .4026111 .1749493 2.30 0.021 .0597167 .7455055
    159 | .3407883 .1874535 1.82 0.069 -.0266139 .7081905
    160 | .0012592 .1455405 0.01 0.993 -.2839949 .2865132
    161 | .1358313 .0715826 1.90 0.058 -.0044679 .2761305
    163 | -.1161922 .109372 -1.06 0.288 -.3305574 .098173
    164 | .2929143 .0854986 3.43 0.001 .1253401 .4604886
    165 | -.3221409 .1290194 -2.50 0.013 -.5750142 -.0692675
    166 | .3102276 .0921346 3.37 0.001 .129647 .4908081
    168 | 1.130028 .322774 3.50 0.000 .4974025 1.762653
    170 | .1649246 .0623946 2.64 0.008 .0426335 .2872157
    171 | .150621 .0649716 2.32 0.020 .0232791 .2779629
    172 | .0347216 .332317 0.10 0.917 -.6166079 .686051
    173 | .1534114 .0629638 2.44 0.015 .0300046 .2768182
    174 | -.0311672 .1306873 -0.24 0.812 -.2873096 .2249751
    175 | .0274888 .0743977 0.37 0.712 -.118328 .1733056
    176 | .1724106 .0497797 3.46 0.001 .0748442 .269977
    177 | .172802 .0850523 2.03 0.042 .0061026 .3395015
    179 | .2716042 .1702945 1.59 0.111 -.0621669 .6053753
    180 | .3713476 .1062206 3.50 0.000 .163159 .5795362
    182 | .0193702 .1530052 0.13 0.899 -.2805146 .3192549
    184 | .3210185 .0990776 3.24 0.001 .1268301 .515207
    185 | .0462149 .1563764 0.30 0.768 -.2602771 .3527069
    187 | .0698952 .0695679 1.00 0.315 -.0664553 .2062457
    188 | -.0334251 .1064789 -0.31 0.754 -.2421199 .1752698
    190 | .3565551 .0592554 6.02 0.000 .2404167 .4726935
    191 | .0690217 .0645224 1.07 0.285 -.0574399 .1954832
    192 | .8476464 .1256336 6.75 0.000 .601409 1.093884
    193 | .2515981 .0967901 2.60 0.009 .061893 .4413032
    195 | .1601033 .137404 1.17 0.244 -.1092036 .4294102
    197 | .3574607 .1684967 2.12 0.034 .0272133 .6877082
    198 | .3709626 .3092596 1.20 0.230 -.2351751 .9771003
    204 | .0174285 .0541959 0.32 0.748 -.0887935 .1236504
    206 | -.3798898 .4004283 -0.95 0.343 -1.164715 .4049353
    209 | .23999 .0926316 2.59 0.010 .0584355 .4215445
    210 | .0284985 .0365235 0.78 0.435 -.0430861 .1000832
    211 | -.2325995 .1008773 -2.31 0.021 -.4303154 -.0348835
    212 | .3302791 .0317353 10.41 0.000 .268079 .3924791
    213 | .665213 .0836916 7.95 0.000 .5011805 .8292455
    214 | .4015228 .2890704 1.39 0.165 -.1650447 .9680903
    215 | .0798686 .1942914 0.41 0.681 -.3009355 .4606727
    217 | -.5452624 .0660233 -8.26 0.000 -.6746657 -.415859
    221 | .2717994 .2665553 1.02 0.308 -.2506393 .7942382
    224 | .0067209 .3926434 0.02 0.986 -.7628461 .7762879
    225 | -.3512399 .0601539 -5.84 0.000 -.4691393 -.2333405
    226 | -.1508163 .3207543 -0.47 0.638 -.7794832 .4778506
    227 | .2782354 .1112085 2.50 0.012 .0602706 .4962001
    229 | 1.166153 .6404576 1.82 0.069 -.0891207 2.421427
    231 | .371917 .369513 1.01 0.314 -.3523152 1.096149
    234 | .1069477 .0660999 1.62 0.106 -.0226056 .236501
    235 | 17.29088 1.61e-07 1.1e+08 0.000 17.29088 17.29088
    238 | .6178964 .1953691 3.16 0.002 .2349801 1.000813
    239 | -.6548 .0710836 -9.21 0.000 -.7941213 -.5154788
    241 | .3987505 .1981316 2.01 0.044 .0104198 .7870812
    242 | .390587 .1504276 2.60 0.009 .0957544 .6854197
    243 | -.0959164 .2836754 -0.34 0.735 -.65191 .4600771
    244 | -1.331163 .1051585 -12.66 0.000 -1.53727 -1.125057
    247 | .1055609 .1954247 0.54 0.589 -.2774644 .4885862
    249 | .1528566 .0722969 2.11 0.034 .0111574 .2945559
    250 | .1496109 .1239498 1.21 0.227 -.0933262 .392548
    252 | -.1634168 .1322389 -1.24 0.217 -.4226003 .0957666
    255 | .0566075 .0683949 0.83 0.408 -.0774441 .1906591
    256 | .5234833 .1458697 3.59 0.000 .237584 .8093827
    257 | .0238993 .1151488 0.21 0.836 -.2017883 .2495868
    258 | .0926211 .1125279 0.82 0.410 -.1279296 .3131718
    260 | -.0563441 .1326084 -0.42 0.671 -.3162518 .2035635
    261 | .1160909 .2112703 0.55 0.583 -.2979913 .530173
    262 | .1784299 .0489056 3.65 0.000 .0825768 .274283
    264 | .129385 .057469 2.25 0.024 .0167479 .2420221
    266 | -.143771 .0907939 -1.58 0.113 -.3217239 .0341818
    267 | .0672449 .066975 1.00 0.315 -.0640237 .1985134
    268 | .0312796 .1340351 0.23 0.815 -.2314244 .2939835
    269 | .161825 .0452222 3.58 0.000 .0731911 .2504589
    271 | .1161613 .2418874 0.48 0.631 -.3579293 .590252
    273 | -.1508855 .0619568 -2.44 0.015 -.2723186 -.0294523
    275 | -.4396436 .0401815 -10.94 0.000 -.5183979 -.3608893
    276 | .2840709 .0579226 4.90 0.000 .1705446 .3975971
    277 | -.0038655 .1291965 -0.03 0.976 -.2570859 .2493549
    278 | .4189674 .1350899 3.10 0.002 .154196 .6837388
    279 | -.0216295 .0333402 -0.65 0.517 -.0869751 .0437162
    281 | .1568697 .1356994 1.16 0.248 -.1090962 .4228356
    283 | -.0274898 .0772257 -0.36 0.722 -.1788495 .1238698
    284 | .3732391 .1486632 2.51 0.012 .0818645 .6646136
    287 | .1700929 .0729812 2.33 0.020 .0270523 .3131335
    288 | .1882206 .0547304 3.44 0.001 .0809509 .2954903
    289 | .2286227 .0999133 2.29 0.022 .0327963 .4244492
    293 | .2556535 .0975158 2.62 0.009 .0645261 .4467809
    294 | .2348916 .1140465 2.06 0.039 .0113647 .4584186
    295 | .1965625 .0719356 2.73 0.006 .0555714 .3375536
    296 | .2558414 .1342931 1.91 0.057 -.0073683 .519051
    297 | .3467153 .2311446 1.50 0.134 -.1063198 .7997503
    298 | .2470408 .0645706 3.83 0.000 .1204847 .3735968
    299 | -.291278 .0440853 -6.61 0.000 -.3776836 -.2048724
    300 | -.0326524 .2008097 -0.16 0.871 -.4262322 .3609274
    301 | -.023373 .0892984 -0.26 0.794 -.1983946 .1516487
    302 | .2280407 .1379926 1.65 0.098 -.0424199 .4985013
    303 | .3161888 .099734 3.17 0.002 .1207138 .5116639
    304 | .109996 .0779635 1.41 0.158 -.0428097 .2628017
    306 | .0506314 .403735 0.13 0.900 -.7406747 .8419375
    307 | -.4684169 .2255777 -2.08 0.038 -.910541 -.0262928
    309 | .2133622 .0602292 3.54 0.000 .095315 .3314093
    310 | .1617903 .0351098 4.61 0.000 .0929763 .2306042
    311 | -.0192113 .3096359 -0.06 0.951 -.6260866 .587664
    314 | .4440804 .1482472 3.00 0.003 .1535213 .7346395
    315 | .1580377 .0685329 2.31 0.021 .0237156 .2923597
    316 | -.2216158 .120877 -1.83 0.067 -.4585303 .0152988
    317 | .1240235 .1905109 0.65 0.515 -.2493711 .497418
    319 | .4758018 .0651125 7.31 0.000 .3481837 .6034199
    320 | -.0906851 .1661306 -0.55 0.585 -.416295 .2349249
    321 | .2125454 .0901161 2.36 0.018 .0359212 .3891697
    322 | .0564791 .1340737 0.42 0.674 -.2063005 .3192587
    323 | .0290089 .0560552 0.52 0.605 -.0808572 .138875
    325 | .0580142 .0925834 0.63 0.531 -.123446 .2394745
    326 | .1600362 .0801491 2.00 0.046 .002947 .3171255
    328 | .4026419 .0757887 5.31 0.000 .2540988 .5511851
    329 | -.6639001 .0356307 -18.63 0.000 -.7337349 -.5940653
    331 | -.2288296 .0349707 -6.54 0.000 -.2973708 -.1602884
    332 | .0396693 .0681965 0.58 0.561 -.0939934 .173332
    333 | .0311444 .0693589 0.45 0.653 -.1047966 .1670854
    334 | -.1903436 .1010952 -1.88 0.060 -.3884865 .0077993
    336 | -.0992794 .0867983 -1.14 0.253 -.2694009 .0708421
    337 | -.0590828 .1306143 -0.45 0.651 -.3150822 .1969166
    339 | .4101889 .1473669 2.78 0.005 .121355 .6990228
    340 | -.0769234 .1220355 -0.63 0.528 -.3161087 .1622618
    341 | .1759138 .1123157 1.57 0.117 -.044221 .3960486
    342 | .3070744 .0800013 3.84 0.000 .1502747 .463874
    344 | -12.34529 1.029686 -11.99 0.000 -14.36344 -10.32714
    348 | -.0293254 .0955934 -0.31 0.759 -.216685 .1580343
    349 | -.0016645 .0930732 -0.02 0.986 -.1840846 .1807556
    350 | .2168165 .1891021 1.15 0.252 -.1538167 .5874497
    351 | .07429 .1819272 0.41 0.683 -.2822809 .4308608
    353 | .0338645 .0840969 0.40 0.687 -.1309624 .1986914
    354 | .1079581 .1327402 0.81 0.416 -.1522079 .3681242
    355 | .2891865 .1776667 1.63 0.104 -.0590338 .6374069
    357 | -.0503639 .0649135 -0.78 0.438 -.1775919 .0768642
    358 | -.1271652 .0482768 -2.63 0.008 -.221786 -.0325444
    359 | .1621126 .2463093 0.66 0.510 -.3206448 .6448701
    363 | .1652744 .0572048 2.89 0.004 .0531552 .2773937
    381 | .2680742 .0833737 3.22 0.001 .1046648 .4314837
    396 | .0634269 .1357077 0.47 0.640 -.2025553 .329409
    408 | .3546149 .072967 4.86 0.000 .2116022 .4976276
    409 | -.0149893 .0753563 -0.20 0.842 -.162685 .1327063
    410 | .2408865 .081701 2.95 0.003 .0807555 .4010175
    411 | -.1229853 .0901284 -1.36 0.172 -.2996337 .0536632
    412 | .2426856 .1740914 1.39 0.163 -.0985274 .5838985
    413 | .2072984 .1416633 1.46 0.143 -.0703566 .4849534
    414 | .2251121 .1250205 1.80 0.072 -.0199235 .4701477
    415 | .3361365 .255581 1.32 0.188 -.1647931 .8370661
    416 | .0455123 .1641154 0.28 0.782 -.276148 .3671727
    418 | -.2054615 .1559766 -1.32 0.188 -.5111699 .1002469
    419 | .0757543 .0581956 1.30 0.193 -.038307 .1898157
    420 | -.1344135 .2467802 -0.54 0.586 -.6180937 .3492667
    423 | .1406605 .1641673 0.86 0.392 -.1811014 .4624224
    424 | .2739782 .1085204 2.52 0.012 .0612822 .4866743
    427 | .133644 .1104307 1.21 0.226 -.0827962 .3500843
    428 | -.2010239 .1610079 -1.25 0.212 -.5165934 .1145457
    429 | .2540993 .1280242 1.98 0.047 .0031764 .5050222
    430 | .1242195 .1638104 0.76 0.448 -.1968429 .4452819
    433 | -.1984485 .1292221 -1.54 0.125 -.4517191 .0548221
    434 | .1348158 .0895985 1.50 0.132 -.040794 .3104256
    Constituency |
    2 | -6.767896 1.250029 -5.41 0.000 -9.217907 -4.317884
    3 | -6.147615 1.254376 -4.90 0.000 -8.606148 -3.689083
    7 | -4.092442 .4738542 -8.64 0.000 -5.021179 -3.163705
    8 | -8.762419 1.478712 -5.93 0.000 -11.66064 -5.864197
    9 | -5.810071 .6202677 -9.37 0.000 -7.025773 -4.594369
    10 | -4.832858 .2811037 -17.19 0.000 -5.383811 -4.281905
    11 | -6.557308 2.079503 -3.15 0.002 -10.63306 -2.481556
    12 | -5.368246 .7684674 -6.99 0.000 -6.874414 -3.862077
    13 | -2.77771 .6068687 -4.58 0.000 -3.967151 -1.58827
    14 | -5.770983 1.510337 -3.82 0.000 -8.731189 -2.810778
    15 | -3.19787 .5252015 -6.09 0.000 -4.227246 -2.168494
    16 | -4.836366 .7696553 -6.28 0.000 -6.344863 -3.327869
    18 | -3.770309 .8368468 -4.51 0.000 -5.410499 -2.130119
    19 | -5.640576 .6578104 -8.57 0.000 -6.929861 -4.351292
    20 | -5.908554 1.237148 -4.78 0.000 -8.33332 -3.483788
    21 | -6.588575 1.279 -5.15 0.000 -9.09537 -4.081781
    22 | -5.06064 .8768551 -5.77 0.000 -6.779245 -3.342036
    23 | -5.184151 .7121997 -7.28 0.000 -6.580036 -3.788265
    25 | -4.596716 .2837211 -16.20 0.000 -5.152799 -4.040633
    26 | -5.389818 .4829199 -11.16 0.000 -6.336323 -4.443312
    28 | -5.423824 .8235405 -6.59 0.000 -7.037934 -3.809714
    31 | -8.437725 1.945799 -4.34 0.000 -12.25142 -4.624028
    33 | -5.68043 1.088294 -5.22 0.000 -7.813448 -3.547413
    34 | -3.770749 1.302201 -2.90 0.004 -6.323016 -1.218483
    35 | -7.641496 2.475247 -3.09 0.002 -12.49289 -2.790102
    36 | -5.317102 1.150518 -4.62 0.000 -7.572075 -3.062129
    37 | -19.45614 9.001638 -2.16 0.031 -37.09902 -1.81325
    38 | -5.627724 3.848284 -1.46 0.144 -13.17022 1.914774
    39 | -11.39914 3.890688 -2.93 0.003 -19.02475 -3.773531
    47 | -9.998111 2.353572 -4.25 0.000 -14.61103 -5.385195
    48 | -5.619795 .4949347 -11.35 0.000 -6.589849 -4.649741
    50 | -8.177966 .742685 -11.01 0.000 -9.633602 -6.72233
    51 | -4.759702 .5145685 -9.25 0.000 -5.768237 -3.751166
    52 | -6.029028 .9225236 -6.54 0.000 -7.837141 -4.220915
    55 | -4.668295 .7494135 -6.23 0.000 -6.137119 -3.199472
    56 | -5.276844 .9829937 -5.37 0.000 -7.203477 -3.350212
    58 | -8.038333 3.674721 -2.19 0.029 -15.24065 -.8360112
    59 | -4.780714 .8041488 -5.95 0.000 -6.356816 -3.204611
    61 | -5.145956 .5563156 -9.25 0.000 -6.236315 -4.055598
    62 | -4.180979 1.073345 -3.90 0.000 -6.284696 -2.077262
    63 | -6.275662 .8351154 -7.51 0.000 -7.912458 -4.638866
    65 | -6.135146 .8899945 -6.89 0.000 -7.879503 -4.390788
    (deleted other constituency FE due to character limit)
    --------------------------------------------------------------------------------------------
    Note: 1666 failures and 0 successes completely determined.
    convergence not achieved
    r(430);

    PS- I have tried firth logit also
    It gives me
    "
    . firthlogit roads_any_project_LS c.Roads_index#i.Constituency i.Constituency

    initial: penalized log likelihood = -<inf> (could not be evaluated)
    "

  • #2
    Ajay:
    the footnote just below the outcome table explains the reason of the issue you're facing.
    In addition, your specification does not allow any dissemination of your results: it is hard to believe that just two predictors along with their interaction can give a fair and true view of the data generating process that you're studying.
    Eventually, I'd recommend you to start with revising your code as follows (please double-check if -c.Roads_index- is a continuous variable):
    Code:
    logit roads_any_project_LS c.Roads_index##i.Constituency, r cluster(BLOCK) noconstant
    Kind regards,
    Carlo
    (Stata 19.0)

    Comment


    • #3
      Sir,
      I have also used the command "logit roads_any_project_LS c.Roads_index##i.Constituency $xlist, r cluster(BLOCK) noconstant" earlier. From 12th iteration, it shows
      "Iteration 12: log pseudolikelihood = -30070.523 (not concave)
      Iteration 13: log pseudolikelihood = -30070.523 (not concave)
      Iteration 14: log pseudolikelihood = -30070.523 (not concave)
      Iteration 15: log pseudolikelihood = -30070.523 (not concave)
      Iteration 16: log pseudolikelihood = -30070.523 (not concave)"
      I have controls like hhd_total bpl_hhd_total i.Post_office_in_village i.Public_transport in the xlist. The regression "logit roads_any_project_LS Roads_index i.Constituency $xlist, r cluster(BLOCK)" works just fine. But I want to know the constituency-specific coefficients and that's why I include the interaction term.

      Comment


      • #4
        Originally posted by Ajay Saharan View Post
        . . . I want to know the constituency-specific coefficients and that's why I include the interaction term.
        With such a rare outcome (fewer than 2% of villages among your 314 constituencies) you're liable to be out of luck.

        It's a bit of a long shot, but you might be able to get something via a so-called borrowing-strength approach; something like the following.
        Code:
        rename (roads_any_project_LS Roads_index Constituency) (rap rin cty)
        melogit rap || cty: rin, covariance(unstructured)
        predict double ebm*, reffects
        bysort cty: generate byte first = _n == 1
        
        list cty ebm? if first, noobs // These are the constituency-specific slopes (ebm1) and intercepts (ebm2) for "Roads_index"
        They'll be subject to so-called shrinkage, but that'll be unavoidable, and maybe even a blessing in disguise, given the dataset that you've got to work with.

        Comment


        • #5
          Originally posted by Joseph Coveney View Post
          melogit rap || cty: rin, covariance(unstructured)[/code]
          It'll be better to include Roads_index in the fixed effects equation, too, in order to capture the population mean slope.
          Code:
          melogit rap c.rin || cty: rin, covariance(unstructured)

          Comment


          • #6
            Originally posted by Joseph Coveney View Post
            It'll be better to include Roads_index in the fixed effects equation, too, in order to capture the population mean slope.
            Code:
            melogit rap c.rin || cty: rin, covariance(unstructured)
            This is really helpful. Thank you for this.

            Comment

            Working...
            X