Dear Statalist Community
First, I wanted to thank you for all the helpful posts on this forum! I also wanted to note that this is my first question on this forum, so I apologize if my question is not entirely phrased the way questions should be phrased in this forum. I will gladly provide additional information if necessary.
I am currently working on my bachelor's thesis examining the effect of corporate sustainability (measured by ESG ratings) on implied growth rates in residual income using an international data set. Depending on which variables I include in my model, I have about 25,000 to 30,000 firm-year observations for about 40-70 different countries. I consider the following dependent variable, independent variable of interest, and firm-level and country-level control variables:
Dependent variable: winsor_g: Implied growth rate in residual income of a firm
Independent variable of interest: ESG: A firm's Environmental, social and governance rating
Firm-Level controls: SIZE (log of total assets) Age (years since date of incorporation) TDTA (total debt to total assets ratio) RDS (research and development expenses as a percentage of sales) CR (current ratio) CAPEXTA (capital expenditures as a percentage of total assets)
Country-Level controls: HDI (Human Development Index) GDPPCgrowth (annual GDP per capita growth) KOFGI (KOF Index of Globalisation)
Further: FY: financial year (year variable) ISINID (ID to uniquely identify each firm) Industry_ID (ID generated to uniquely identify each industry) Country_ID (ID generated to uniquely identify each country) ISO_Head (Country_ID is generated based on ISO_Head, also ISO_Head uniquely identifies each country but is a string)
First, I want to investigate the relationship between corporate sustainability and growth across the entire international data set using the abovementioned control variables. Second, I will examine the influence of a country's level of development and cultural dimension scores on this relationship using interaction terms. (Since cultural dimension scores are time-invariant, I cannot use a fixed effects model for the last regression analysis.)
Despite long research, I am still unsure whether to use a firm-fixed effects, random-effects (GLS / ML), or a multilevel (mixed-effects ML regression with random intercepts) model for my regressions. As an example, here is my code and results for some of my regressions, including a Hausman test:
As you can see, the random effects (GLS/ML) and the multilevel model provide highly significant coefficients for ESG. In contrast, the ESG coefficient in the fixed effects model is highly insignificant. However, the Hausman test seems to favor firm fixed effects.
I do not understand why results differ that much depending on the model used! Does this mean that I should not use the random effects (GLS/ML) or multilevel model? Or is it more likely that the fixed effects model is inappropriate in this case? For example, I thought that the ESG variable within a company might not change enough over time, and, therefore, the firm-fixed effects model might not be appropriate.
So I would like to know the following:
1) Do I have fundamentally wrong intuitions or fundamentally wrong code?
2) How should I determine which of these models is most appropriate, and how can I justify my decision?
3) Does my research question, sample size, or a similar factor already make one model theoretically preferable?
4) Are there any other reasons (that I could test) why the models mentioned are or are not suitable?
5) As a previous paper uses a multilevel regression with random intercept modeling (and year and industry fixed effects) when analyzing the effect of time-invariant variables (like cultural values) on the described relationship, I planned on applying this multilevel model on all my regressions (with the idea of having one consistent approach for all hypotheses/regressions) but am now unsure if that is a good approach.
Thank you very much for your help! Please contact me anytime if this description is too unclear or contains too little information to answer my question!
Kind regards
Fabian Büchi
First, I wanted to thank you for all the helpful posts on this forum! I also wanted to note that this is my first question on this forum, so I apologize if my question is not entirely phrased the way questions should be phrased in this forum. I will gladly provide additional information if necessary.
I am currently working on my bachelor's thesis examining the effect of corporate sustainability (measured by ESG ratings) on implied growth rates in residual income using an international data set. Depending on which variables I include in my model, I have about 25,000 to 30,000 firm-year observations for about 40-70 different countries. I consider the following dependent variable, independent variable of interest, and firm-level and country-level control variables:
Dependent variable: winsor_g: Implied growth rate in residual income of a firm
Independent variable of interest: ESG: A firm's Environmental, social and governance rating
Firm-Level controls: SIZE (log of total assets) Age (years since date of incorporation) TDTA (total debt to total assets ratio) RDS (research and development expenses as a percentage of sales) CR (current ratio) CAPEXTA (capital expenditures as a percentage of total assets)
Country-Level controls: HDI (Human Development Index) GDPPCgrowth (annual GDP per capita growth) KOFGI (KOF Index of Globalisation)
Further: FY: financial year (year variable) ISINID (ID to uniquely identify each firm) Industry_ID (ID generated to uniquely identify each industry) Country_ID (ID generated to uniquely identify each country) ISO_Head (Country_ID is generated based on ISO_Head, also ISO_Head uniquely identifies each country but is a string)
First, I want to investigate the relationship between corporate sustainability and growth across the entire international data set using the abovementioned control variables. Second, I will examine the influence of a country's level of development and cultural dimension scores on this relationship using interaction terms. (Since cultural dimension scores are time-invariant, I cannot use a fixed effects model for the last regression analysis.)
Despite long research, I am still unsure whether to use a firm-fixed effects, random-effects (GLS / ML), or a multilevel (mixed-effects ML regression with random intercepts) model for my regressions. As an example, here is my code and results for some of my regressions, including a Hausman test:
Code:
. *Firm-fixed effects model with year fixed effects . xtreg winsor_g ESG SIZE Age TDTA RDS CR CAPEXTA HDI GDPPCgrowth KOFGI i.FY, fe Fixed-effects (within) regression Number of obs = 22,590 Group variable: ISINID Number of groups = 5,230 R-squared: Obs per group: Within = 0.0732 min = 1 Between = 0.0001 avg = 4.3 Overall = 0.0001 max = 9 F(18, 17342) = 76.14 corr(u_i, Xb) = -0.9992 Prob > F = 0.0000 ------------------------------------------------------------------------------ winsor_g | Coefficient Std. err. t P>|t| [95% conf. interval] -------------+---------------------------------------------------------------- ESG | -2.39e-06 .0000738 -0.03 0.974 -.000147 .0001423 SIZE | -.0109689 .0022439 -4.89 0.000 -.0153673 -.0065706 Age | .0692884 .0525641 1.32 0.187 -.0337425 .1723194 TDTA | .0103895 .0066061 1.57 0.116 -.0025592 .0233382 RDS | .0000673 .0000965 0.70 0.486 -.0001218 .0002564 CR | .0009998 .0005906 1.69 0.090 -.0001578 .0021575 CAPEXTA | -.0738388 .0198721 -3.72 0.000 -.1127902 -.0348874 HDI | -.0879332 .1241895 -0.71 0.479 -.3313572 .1554907 GDPPCgrowth | .1709007 .0323506 5.28 0.000 .1074903 .2343111 KOFGI | .0048154 .0010288 4.68 0.000 .0027988 .0068319 | FY | 2014 | -.0654977 .0525822 -1.25 0.213 -.1685642 .0375687 2015 | -.129166 .1050985 -1.23 0.219 -.3351696 .0768376 2016 | -.200469 .1576681 -1.27 0.204 -.5095144 .1085764 2017 | -.2714317 .2102363 -1.29 0.197 -.683516 .1406526 2018 | -.3578895 .2627735 -1.36 0.173 -.8729521 .1571731 2019 | -.4294352 .315333 -1.36 0.173 -1.04752 .1886493 2020 | -.5104639 .3678705 -1.39 0.165 -1.231527 .2105994 2021 | -.5940772 .4204572 -1.41 0.158 -1.418216 .2300612 | _cons | -2.125849 1.564802 -1.36 0.174 -5.193018 .9413208 -------------+---------------------------------------------------------------- sigma_u | 1.9262269 sigma_e | .06860304 rho | .99873316 (fraction of variance due to u_i) ------------------------------------------------------------------------------ F test that all u_i=0: F(5229, 17342) = 5.58 Prob > F = 0.0000 . est store fixed . . *Random effects model (GLS) with year, industy fixed, and country effects . xtreg winsor_g ESG SIZE Age TDTA RDS CR CAPEXTA HDI GDPPCgrowth KOFGI i.FY i.Industry_ID i.Country_ID, re Random-effects GLS regression Number of obs = 22,590 Group variable: ISINID Number of groups = 5,230 R-squared: Obs per group: Within = 0.0720 min = 1 Between = 0.1766 avg = 4.3 Overall = 0.1303 max = 9 Wald chi2(106) = 2417.79 corr(u_i, X) = 0 (assumed) Prob > chi2 = 0.0000 ------------------------------------------------------------------------------ winsor_g | Coefficient Std. err. z P>|z| [95% conf. interval] -------------+---------------------------------------------------------------- ESG | .0001875 .0000551 3.40 0.001 .0000795 .0002956 SIZE | -.0100899 .0009226 -10.94 0.000 -.0118982 -.0082817 Age | .0000215 .0000503 0.43 0.669 -.000077 .00012 TDTA | -.0041148 .0048524 -0.85 0.396 -.0136253 .0053957 RDS | .0000451 .0000927 0.49 0.627 -.0001366 .0002269 CR | .0011442 .0004564 2.51 0.012 .0002497 .0020387 CAPEXTA | -.0509159 .0139248 -3.66 0.000 -.0782081 -.0236238 HDI | .1542254 .1174259 1.31 0.189 -.0759252 .384376 GDPPCgrowth | .1552501 .0315294 4.92 0.000 .0934537 .2170466 KOFGI | .0044576 .0009985 4.46 0.000 .0025005 .0064147 | FY | 2014 | .0035742 .0025988 1.38 0.169 -.0015192 .0086677 2015 | .0082835 .0026534 3.12 0.002 .003083 .013484 2016 | .0056978 .0027884 2.04 0.041 .0002326 .0111629 2017 | .0016247 .0028959 0.56 0.575 -.0040511 .0073005 2018 | -.0152687 .0030754 -4.96 0.000 -.0212964 -.0092411 2019 | -.0186997 .0032168 -5.81 0.000 -.0250045 -.0123949 2020 | -.0290688 .00331 -8.78 0.000 -.0355562 -.0225814 2021 | -.0430519 .0031477 -13.68 0.000 -.0492212 -.0368826 | Industry_ID | 2 | .0705784 .0165067 4.28 0.000 .0382259 .1029309 3 | .0715423 .103057 0.69 0.488 -.1304458 .2735303 4 | .0224903 .0084473 2.66 0.008 .0059339 .0390467 5 | -.0055045 .008085 -0.68 0.496 -.0213508 .0103417 6 | .0032171 .0114894 0.28 0.779 -.0193017 .0257359 7 | .0555432 .0075052 7.40 0.000 .0408333 .0702531 8 | .0242278 .0078252 3.10 0.002 .0088907 .0395649 9 | .0410719 .0083211 4.94 0.000 .0247629 .0573809 10 | .005025 .009255 0.54 0.587 -.0131145 .0231645 11 | .0087483 .0082823 1.06 0.291 -.0074846 .0249813 12 | .0547788 .007995 6.85 0.000 .0391089 .0704487 13 | .0364164 .008306 4.38 0.000 .020137 .0526959 14 | .0361012 .007815 4.62 0.000 .0207841 .0514182 15 | .0409449 .0120586 3.40 0.001 .0173104 .0645793 16 | .0472682 .0109451 4.32 0.000 .0258162 .0687202 17 | .0205356 .0161921 1.27 0.205 -.0112004 .0522716 18 | .0391114 .0107476 3.64 0.000 .0180465 .0601763 19 | .0464077 .0238153 1.95 0.051 -.0002695 .0930848 21 | -.0164367 .0435808 -0.38 0.706 -.1018534 .0689801 22 | .0526119 .0082974 6.34 0.000 .0363493 .0688745 23 | .0472637 .00826 5.72 0.000 .0310745 .063453 24 | .0575979 .0078828 7.31 0.000 .0421479 .0730479 25 | .0690128 .0076398 9.03 0.000 .0540391 .0839864 26 | .0855683 .0236824 3.61 0.000 .0391517 .1319848 27 | .0234566 .0102391 2.29 0.022 .0033884 .0435248 28 | -.0108079 .0082585 -1.31 0.191 -.0269942 .0053784 29 | .0111107 .0082712 1.34 0.179 -.0051006 .0273219 30 | .0317402 .0200032 1.59 0.113 -.0074653 .0709458 | Country_ID | 2 | -.095123 .0506553 -1.88 0.060 -.1944057 .0041596 3 | -.0433158 .0334877 -1.29 0.196 -.1089504 .0223188 4 | .0164448 .0270144 0.61 0.543 -.0365026 .0693921 5 | -.0208296 .0329929 -0.63 0.528 -.0854945 .0438354 8 | .0885379 .0332319 2.66 0.008 .0234045 .1536713 9 | .0178278 .0277745 0.64 0.521 -.0366092 .0722649 10 | .0074934 .0309045 0.24 0.808 -.0530782 .0680651 11 | .0188273 .0349724 0.54 0.590 -.0497174 .087372 12 | .1356242 .0319199 4.25 0.000 .0730623 .1981861 13 | .080306 .0491991 1.63 0.103 -.0161224 .1767344 14 | -.1238982 .0584689 -2.12 0.034 -.2384951 -.0093013 15 | -.0082434 .0870052 -0.09 0.925 -.1787705 .1622837 16 | .0002765 .0294804 0.01 0.993 -.0575041 .0580571 17 | -.002065 .0318577 -0.06 0.948 -.064505 .060375 18 | .0333645 .0446763 0.75 0.455 -.0541995 .1209285 19 | .0401376 .0313582 1.28 0.201 -.0213233 .1015985 20 | -.0006863 .0301337 -0.02 0.982 -.0597472 .0583746 22 | -.0037935 .029151 -0.13 0.896 -.0609284 .0533415 23 | -.0154542 .0292095 -0.53 0.597 -.0727038 .0417954 26 | -.0409215 .0372417 -1.10 0.272 -.1139138 .0320708 27 | .053396 .0295183 1.81 0.070 -.0044588 .1112508 28 | -.0905328 .0606798 -1.49 0.136 -.209463 .0283973 29 | .148424 .0377517 3.93 0.000 .074432 .222416 30 | -.0089671 .0310546 -0.29 0.773 -.069833 .0518989 31 | .0787124 .0356722 2.21 0.027 .0087962 .1486287 33 | .1776875 .0417197 4.26 0.000 .0959185 .2594566 34 | .1204773 .0732883 1.64 0.100 -.0231651 .2641197 35 | .0263402 .0342847 0.77 0.442 -.0408566 .0935371 37 | .0565313 .0263539 2.15 0.032 .0048786 .108184 39 | .1532678 .0978257 1.57 0.117 -.038467 .3450026 40 | .0251009 .0275116 0.91 0.362 -.0288209 .0790226 41 | .0638164 .0507098 1.26 0.208 -.035573 .1632058 44 | -.3251124 .1082911 -3.00 0.003 -.5373591 -.1128657 45 | .0205338 .0326722 0.63 0.530 -.0435025 .0845701 46 | .160649 .0591855 2.71 0.007 .0446476 .2766505 49 | -.0094294 .0501471 -0.19 0.851 -.1077159 .0888572 50 | .1313747 .0342221 3.84 0.000 .0643006 .1984488 51 | .0487631 .0302823 1.61 0.107 -.010589 .1081153 52 | .0069189 .0326689 0.21 0.832 -.057111 .0709488 53 | -.001618 .0304502 -0.05 0.958 -.0612992 .0580632 54 | .0384879 .0291089 1.32 0.186 -.0185644 .0955402 55 | .0731123 .0608473 1.20 0.230 -.0461462 .1923708 56 | .0656505 .0853148 0.77 0.442 -.1015634 .2328643 57 | .0310206 .0492127 0.63 0.528 -.0654345 .1274757 58 | .1449909 .0387659 3.74 0.000 .0690112 .2209706 59 | -.0699147 .1006199 -0.69 0.487 -.267126 .1272967 60 | -.0279 .0339965 -0.82 0.412 -.094532 .0387319 62 | .007089 .037765 0.19 0.851 -.0669291 .0811072 63 | .0946544 .0403222 2.35 0.019 .0156244 .1736843 65 | .0081776 .0327049 0.25 0.803 -.0559229 .0722781 66 | .1662942 .0322711 5.15 0.000 .103044 .2295444 67 | -.0116125 .0298762 -0.39 0.698 -.0701689 .0469438 68 | -.0035924 .0297088 -0.12 0.904 -.0618206 .0546359 69 | -.0474068 .0880717 -0.54 0.590 -.2200242 .1252106 70 | .0902161 .0298148 3.03 0.002 .0317802 .1486521 71 | -.0949128 .0310808 -3.05 0.002 -.15583 -.0339956 74 | .0455349 .0264831 1.72 0.086 -.006371 .0974408 75 | .1209061 .0643097 1.88 0.060 -.0051386 .2469508 76 | .1207171 .0442349 2.73 0.006 .0340184 .2074159 77 | .0385638 .0349209 1.10 0.269 -.0298798 .1070074 | _cons | -.3673088 .1241373 -2.96 0.003 -.6106136 -.1240041 -------------+---------------------------------------------------------------- sigma_u | .07688877 sigma_e | .06860304 rho | .5567657 (fraction of variance due to u_i) ------------------------------------------------------------------------------ . est store random . . *Hausman test . hausman fixed random Note: the rank of the differenced variance matrix (16) does not equal the number of coefficients being tested (18); be sure this is what you expect, or there may be problems computing the test. Examine the output of your estimators for anything unexpected and possibly consider scaling your variables so that the coefficients are on a similar scale. ---- Coefficients ---- | (b) (B) (b-B) sqrt(diag(V_b-V_B)) | fixed random Difference Std. err. -------------+---------------------------------------------------------------- ESG | -2.39e-06 .0001875 -.0001899 .000049 SIZE | -.0109689 -.0100899 -.000879 .0020455 Age | .0692884 .0000215 .069267 .0525641 TDTA | .0103895 -.0041148 .0145043 .0044828 RDS | .0000673 .0000451 .0000221 .0000266 CR | .0009998 .0011442 -.0001443 .0003749 CAPEXTA | -.0738388 -.0509159 -.0229229 .0141775 HDI | -.0879332 .1542254 -.2421586 .0404251 GDPPCgrowth | .1709007 .1552501 .0156506 .0072427 KOFGI | .0048154 .0044576 .0003577 .0002476 FY | 2014 | -.0654977 .0035742 -.069072 .052518 2015 | -.129166 .0082835 -.1374495 .105065 2016 | -.200469 .0056978 -.2061667 .1576435 2017 | -.2714317 .0016247 -.2730564 .2102164 2018 | -.3578895 -.0152687 -.3426208 .2627555 2019 | -.4294352 -.0186997 -.4107355 .3153166 2020 | -.5104639 -.0290688 -.4813951 .3678556 2021 | -.5940772 -.0430519 -.5510253 .4204454 ------------------------------------------------------------------------------ b = Consistent under H0 and Ha; obtained from xtreg. B = Inconsistent under Ha, efficient under H0; obtained from xtreg. Test of H0: Difference in coefficients not systematic chi2(16) = (b-B)'[(V_b-V_B)^(-1)](b-B) = 113.14 Prob > chi2 = 0.0000 . . *Multi-level vs. single-level . mixed winsor_g || ISO_Head: Performing EM optimization ... Performing gradient-based optimization: Iteration 0: Log likelihood = 26294.384 Iteration 1: Log likelihood = 26294.384 Computing standard errors ... Mixed-effects ML regression Number of obs = 31,006 Group variable: ISO_Head Number of groups = 77 Obs per group: min = 1 avg = 402.7 max = 9,354 Wald chi2(0) = . Log likelihood = 26294.384 Prob > chi2 = . ------------------------------------------------------------------------------ winsor_g | Coefficient Std. err. z P>|z| [95% conf. interval] -------------+---------------------------------------------------------------- _cons | -.0568708 .0065113 -8.73 0.000 -.0696327 -.0441089 ------------------------------------------------------------------------------ ------------------------------------------------------------------------------ Random-effects parameters | Estimate Std. err. [95% conf. interval] -----------------------------+------------------------------------------------ ISO_Head: Identity | var(_cons) | .0028039 .0005443 .0019166 .0041021 -----------------------------+------------------------------------------------ var(Residual) | .010654 .0000857 .0104874 .0108233 ------------------------------------------------------------------------------ LR test vs. linear model: chibar2(01) = 1476.02 Prob >= chibar2 = 0.0000 . estat icc Intraclass correlation ------------------------------------------------------------------------------ Level | ICC Std. err. [95% conf. interval] -----------------------------+------------------------------------------------ ISO_Head | .2083469 .0320601 .1524014 .2780913 ------------------------------------------------------------------------------ . . *Multilevl model with year and industry fixed effects . mixed winsor_g ESG SIZE Age TDTA RDS CR CAPEXTA HDI GDPPCgrowth KOFGI i.FY i.Industry_ID || ISO_Head: Performing EM optimization ... Performing gradient-based optimization: Iteration 0: Log likelihood = 21310.829 Iteration 1: Log likelihood = 21310.829 Computing standard errors ... Mixed-effects ML regression Number of obs = 22,590 Group variable: ISO_Head Number of groups = 61 Obs per group: min = 1 avg = 370.3 max = 6,785 Wald chi2(46) = 2024.77 Log likelihood = 21310.829 Prob > chi2 = 0.0000 ------------------------------------------------------------------------------ winsor_g | Coefficient Std. err. z P>|z| [95% conf. interval] -------------+---------------------------------------------------------------- ESG | .0002938 .0000409 7.19 0.000 .0002137 .0003739 SIZE | -.0093939 .000583 -16.11 0.000 -.0105366 -.0082513 Age | .0000485 .000025 1.94 0.052 -5.06e-07 .0000975 TDTA | -.0223034 .0035677 -6.25 0.000 -.0292959 -.0153109 RDS | .0000662 .0001153 0.57 0.566 -.0001597 .0002921 CR | .0007453 .0003997 1.86 0.062 -.0000382 .0015287 CAPEXTA | -.0269738 .0127314 -2.12 0.034 -.0519269 -.0020207 HDI | .2137668 .0862447 2.48 0.013 .0447302 .3828033 GDPPCgrowth | .1010101 .0409246 2.47 0.014 .0207993 .1812209 KOFGI | .0010835 .0008372 1.29 0.196 -.0005575 .0027245 | FY | 2014 | .0065828 .0034156 1.93 0.054 -.0001117 .0132773 2015 | .011849 .0033438 3.54 0.000 .0052954 .0184027 2016 | .0117035 .0032994 3.55 0.000 .0052368 .0181702 2017 | .0032649 .0032144 1.02 0.310 -.0030351 .0095649 2018 | -.0084931 .0032685 -2.60 0.009 -.0148993 -.0020869 2019 | -.0121533 .0032326 -3.76 0.000 -.0184891 -.0058176 2020 | -.023709 .0038786 -6.11 0.000 -.0313109 -.016107 2021 | -.0340569 .0034152 -9.97 0.000 -.0407505 -.0273633 | Industry_ID | 2 | .0601981 .0100782 5.97 0.000 .0404452 .0799511 3 | .0660787 .0939344 0.70 0.482 -.1180293 .2501867 4 | .0204559 .0045417 4.50 0.000 .0115544 .0293574 5 | -.0035117 .0045484 -0.77 0.440 -.0124265 .005403 6 | .0100505 .0060274 1.67 0.095 -.0017631 .0218641 7 | .0467232 .0040959 11.41 0.000 .0386955 .054751 8 | .0257573 .0043281 5.95 0.000 .0172743 .0342403 9 | .0309369 .0043936 7.04 0.000 .0223256 .0395482 10 | .0017321 .004921 0.35 0.725 -.0079128 .011377 11 | .0026584 .0044756 0.59 0.553 -.0061136 .0114305 12 | .0466072 .004337 10.75 0.000 .0381068 .0551076 13 | .0265765 .0044471 5.98 0.000 .0178603 .0352928 14 | .025399 .0041886 6.06 0.000 .0171895 .0336085 15 | .0328156 .0060624 5.41 0.000 .0209335 .0446977 16 | .0321594 .0056216 5.72 0.000 .0211413 .0431776 17 | .0149714 .0079179 1.89 0.059 -.0005475 .0304902 18 | .03626 .0061815 5.87 0.000 .0241444 .0483755 19 | .0454169 .0134931 3.37 0.001 .0189708 .0718629 21 | -.0092164 .0334052 -0.28 0.783 -.0746895 .0562566 22 | .0449322 .0044642 10.06 0.000 .0361825 .0536818 23 | .0356056 .0045374 7.85 0.000 .0267126 .0444987 24 | .042552 .0043619 9.76 0.000 .0340028 .0511011 25 | .0556 .0042607 13.05 0.000 .0472492 .0639508 26 | .077396 .0128278 6.03 0.000 .0522539 .1025381 27 | .018252 .005089 3.59 0.000 .0082777 .0282262 28 | -.0063825 .0043704 -1.46 0.144 -.0149483 .0021834 29 | .0132645 .0047977 2.76 0.006 .0038612 .0226678 30 | .0268071 .0129162 2.08 0.038 .0014919 .0521224 | _cons | -.1352934 .0590556 -2.29 0.022 -.2510402 -.0195465 ------------------------------------------------------------------------------ ------------------------------------------------------------------------------ Random-effects parameters | Estimate Std. err. [95% conf. interval] -----------------------------+------------------------------------------------ ISO_Head: Identity | var(_cons) | .002443 .0006309 .0014727 .0040526 -----------------------------+------------------------------------------------ var(Residual) | .0087957 .0000829 .0086347 .0089598 ------------------------------------------------------------------------------ LR test vs. linear model: chibar2(01) = 974.72 Prob >= chibar2 = 0.0000
I do not understand why results differ that much depending on the model used! Does this mean that I should not use the random effects (GLS/ML) or multilevel model? Or is it more likely that the fixed effects model is inappropriate in this case? For example, I thought that the ESG variable within a company might not change enough over time, and, therefore, the firm-fixed effects model might not be appropriate.
So I would like to know the following:
1) Do I have fundamentally wrong intuitions or fundamentally wrong code?
2) How should I determine which of these models is most appropriate, and how can I justify my decision?
3) Does my research question, sample size, or a similar factor already make one model theoretically preferable?
4) Are there any other reasons (that I could test) why the models mentioned are or are not suitable?
5) As a previous paper uses a multilevel regression with random intercept modeling (and year and industry fixed effects) when analyzing the effect of time-invariant variables (like cultural values) on the described relationship, I planned on applying this multilevel model on all my regressions (with the idea of having one consistent approach for all hypotheses/regressions) but am now unsure if that is a good approach.
Thank you very much for your help! Please contact me anytime if this description is too unclear or contains too little information to answer my question!
Kind regards
Fabian Büchi
Comment