Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • Panel Data Regression: Is firm-fixed effects, random-effects (GLS / ML), or a multilevel (mixed-effects ML regression) model appropriate?

    Dear Statalist Community

    First, I wanted to thank you for all the helpful posts on this forum! I also wanted to note that this is my first question on this forum, so I apologize if my question is not entirely phrased the way questions should be phrased in this forum. I will gladly provide additional information if necessary.

    I am currently working on my bachelor's thesis examining the effect of corporate sustainability (measured by ESG ratings) on implied growth rates in residual income using an international data set. Depending on which variables I include in my model, I have about 25,000 to 30,000 firm-year observations for about 40-70 different countries. I consider the following dependent variable, independent variable of interest, and firm-level and country-level control variables:

    Dependent variable: winsor_g: Implied growth rate in residual income of a firm

    Independent variable of interest: ESG: A firm's Environmental, social and governance rating

    Firm-Level controls: SIZE (log of total assets) Age (years since date of incorporation) TDTA (total debt to total assets ratio) RDS (research and development expenses as a percentage of sales) CR (current ratio) CAPEXTA (capital expenditures as a percentage of total assets)

    Country-Level controls: HDI (Human Development Index) GDPPCgrowth (annual GDP per capita growth) KOFGI (KOF Index of Globalisation)

    Further: FY: financial year (year variable) ISINID (ID to uniquely identify each firm) Industry_ID (ID generated to uniquely identify each industry) Country_ID (ID generated to uniquely identify each country) ISO_Head (Country_ID is generated based on ISO_Head, also ISO_Head uniquely identifies each country but is a string)

    First, I want to investigate the relationship between corporate sustainability and growth across the entire international data set using the abovementioned control variables. Second, I will examine the influence of a country's level of development and cultural dimension scores on this relationship using interaction terms. (Since cultural dimension scores are time-invariant, I cannot use a fixed effects model for the last regression analysis.)

    Despite long research, I am still unsure whether to use a firm-fixed effects, random-effects (GLS / ML), or a multilevel (mixed-effects ML regression with random intercepts) model for my regressions. As an example, here is my code and results for some of my regressions, including a Hausman test:

    Code:
    . *Firm-fixed effects model with year fixed effects 
    . xtreg winsor_g ESG SIZE Age TDTA RDS CR CAPEXTA HDI GDPPCgrowth KOFGI i.FY, fe
    
    Fixed-effects (within) regression               Number of obs     =     22,590
    Group variable: ISINID                          Number of groups  =      5,230
    
    R-squared:                                      Obs per group:
         Within  = 0.0732                                         min =          1
         Between = 0.0001                                         avg =        4.3
         Overall = 0.0001                                         max =          9
    
                                                    F(18, 17342)      =      76.14
    corr(u_i, Xb) = -0.9992                         Prob > F          =     0.0000
    
    ------------------------------------------------------------------------------
        winsor_g | Coefficient  Std. err.      t    P>|t|     [95% conf. interval]
    -------------+----------------------------------------------------------------
             ESG |  -2.39e-06   .0000738    -0.03   0.974     -.000147    .0001423
            SIZE |  -.0109689   .0022439    -4.89   0.000    -.0153673   -.0065706
             Age |   .0692884   .0525641     1.32   0.187    -.0337425    .1723194
            TDTA |   .0103895   .0066061     1.57   0.116    -.0025592    .0233382
             RDS |   .0000673   .0000965     0.70   0.486    -.0001218    .0002564
              CR |   .0009998   .0005906     1.69   0.090    -.0001578    .0021575
         CAPEXTA |  -.0738388   .0198721    -3.72   0.000    -.1127902   -.0348874
             HDI |  -.0879332   .1241895    -0.71   0.479    -.3313572    .1554907
     GDPPCgrowth |   .1709007   .0323506     5.28   0.000     .1074903    .2343111
           KOFGI |   .0048154   .0010288     4.68   0.000     .0027988    .0068319
                 |
              FY |
           2014  |  -.0654977   .0525822    -1.25   0.213    -.1685642    .0375687
           2015  |   -.129166   .1050985    -1.23   0.219    -.3351696    .0768376
           2016  |   -.200469   .1576681    -1.27   0.204    -.5095144    .1085764
           2017  |  -.2714317   .2102363    -1.29   0.197     -.683516    .1406526
           2018  |  -.3578895   .2627735    -1.36   0.173    -.8729521    .1571731
           2019  |  -.4294352    .315333    -1.36   0.173     -1.04752    .1886493
           2020  |  -.5104639   .3678705    -1.39   0.165    -1.231527    .2105994
           2021  |  -.5940772   .4204572    -1.41   0.158    -1.418216    .2300612
                 |
           _cons |  -2.125849   1.564802    -1.36   0.174    -5.193018    .9413208
    -------------+----------------------------------------------------------------
         sigma_u |  1.9262269
         sigma_e |  .06860304
             rho |  .99873316   (fraction of variance due to u_i)
    ------------------------------------------------------------------------------
    F test that all u_i=0: F(5229, 17342) = 5.58                 Prob > F = 0.0000
    
    . est store fixed 
    
    . 
    . *Random effects model (GLS) with year, industy fixed, and country effects 
    . xtreg winsor_g ESG SIZE Age TDTA RDS CR CAPEXTA HDI GDPPCgrowth KOFGI i.FY i.Industry_ID i.Country_ID, re
    
    Random-effects GLS regression                   Number of obs     =     22,590
    Group variable: ISINID                          Number of groups  =      5,230
    
    R-squared:                                      Obs per group:
         Within  = 0.0720                                         min =          1
         Between = 0.1766                                         avg =        4.3
         Overall = 0.1303                                         max =          9
    
                                                    Wald chi2(106)    =    2417.79
    corr(u_i, X) = 0 (assumed)                      Prob > chi2       =     0.0000
    
    ------------------------------------------------------------------------------
        winsor_g | Coefficient  Std. err.      z    P>|z|     [95% conf. interval]
    -------------+----------------------------------------------------------------
             ESG |   .0001875   .0000551     3.40   0.001     .0000795    .0002956
            SIZE |  -.0100899   .0009226   -10.94   0.000    -.0118982   -.0082817
             Age |   .0000215   .0000503     0.43   0.669     -.000077      .00012
            TDTA |  -.0041148   .0048524    -0.85   0.396    -.0136253    .0053957
             RDS |   .0000451   .0000927     0.49   0.627    -.0001366    .0002269
              CR |   .0011442   .0004564     2.51   0.012     .0002497    .0020387
         CAPEXTA |  -.0509159   .0139248    -3.66   0.000    -.0782081   -.0236238
             HDI |   .1542254   .1174259     1.31   0.189    -.0759252     .384376
     GDPPCgrowth |   .1552501   .0315294     4.92   0.000     .0934537    .2170466
           KOFGI |   .0044576   .0009985     4.46   0.000     .0025005    .0064147
                 |
              FY |
           2014  |   .0035742   .0025988     1.38   0.169    -.0015192    .0086677
           2015  |   .0082835   .0026534     3.12   0.002      .003083     .013484
           2016  |   .0056978   .0027884     2.04   0.041     .0002326    .0111629
           2017  |   .0016247   .0028959     0.56   0.575    -.0040511    .0073005
           2018  |  -.0152687   .0030754    -4.96   0.000    -.0212964   -.0092411
           2019  |  -.0186997   .0032168    -5.81   0.000    -.0250045   -.0123949
           2020  |  -.0290688     .00331    -8.78   0.000    -.0355562   -.0225814
           2021  |  -.0430519   .0031477   -13.68   0.000    -.0492212   -.0368826
                 |
     Industry_ID |
              2  |   .0705784   .0165067     4.28   0.000     .0382259    .1029309
              3  |   .0715423    .103057     0.69   0.488    -.1304458    .2735303
              4  |   .0224903   .0084473     2.66   0.008     .0059339    .0390467
              5  |  -.0055045    .008085    -0.68   0.496    -.0213508    .0103417
              6  |   .0032171   .0114894     0.28   0.779    -.0193017    .0257359
              7  |   .0555432   .0075052     7.40   0.000     .0408333    .0702531
              8  |   .0242278   .0078252     3.10   0.002     .0088907    .0395649
              9  |   .0410719   .0083211     4.94   0.000     .0247629    .0573809
             10  |    .005025    .009255     0.54   0.587    -.0131145    .0231645
             11  |   .0087483   .0082823     1.06   0.291    -.0074846    .0249813
             12  |   .0547788    .007995     6.85   0.000     .0391089    .0704487
             13  |   .0364164    .008306     4.38   0.000      .020137    .0526959
             14  |   .0361012    .007815     4.62   0.000     .0207841    .0514182
             15  |   .0409449   .0120586     3.40   0.001     .0173104    .0645793
             16  |   .0472682   .0109451     4.32   0.000     .0258162    .0687202
             17  |   .0205356   .0161921     1.27   0.205    -.0112004    .0522716
             18  |   .0391114   .0107476     3.64   0.000     .0180465    .0601763
             19  |   .0464077   .0238153     1.95   0.051    -.0002695    .0930848
             21  |  -.0164367   .0435808    -0.38   0.706    -.1018534    .0689801
             22  |   .0526119   .0082974     6.34   0.000     .0363493    .0688745
             23  |   .0472637     .00826     5.72   0.000     .0310745     .063453
             24  |   .0575979   .0078828     7.31   0.000     .0421479    .0730479
             25  |   .0690128   .0076398     9.03   0.000     .0540391    .0839864
             26  |   .0855683   .0236824     3.61   0.000     .0391517    .1319848
             27  |   .0234566   .0102391     2.29   0.022     .0033884    .0435248
             28  |  -.0108079   .0082585    -1.31   0.191    -.0269942    .0053784
             29  |   .0111107   .0082712     1.34   0.179    -.0051006    .0273219
             30  |   .0317402   .0200032     1.59   0.113    -.0074653    .0709458
                 |
      Country_ID |
              2  |   -.095123   .0506553    -1.88   0.060    -.1944057    .0041596
              3  |  -.0433158   .0334877    -1.29   0.196    -.1089504    .0223188
              4  |   .0164448   .0270144     0.61   0.543    -.0365026    .0693921
              5  |  -.0208296   .0329929    -0.63   0.528    -.0854945    .0438354
              8  |   .0885379   .0332319     2.66   0.008     .0234045    .1536713
              9  |   .0178278   .0277745     0.64   0.521    -.0366092    .0722649
             10  |   .0074934   .0309045     0.24   0.808    -.0530782    .0680651
             11  |   .0188273   .0349724     0.54   0.590    -.0497174     .087372
             12  |   .1356242   .0319199     4.25   0.000     .0730623    .1981861
             13  |    .080306   .0491991     1.63   0.103    -.0161224    .1767344
             14  |  -.1238982   .0584689    -2.12   0.034    -.2384951   -.0093013
             15  |  -.0082434   .0870052    -0.09   0.925    -.1787705    .1622837
             16  |   .0002765   .0294804     0.01   0.993    -.0575041    .0580571
             17  |   -.002065   .0318577    -0.06   0.948     -.064505     .060375
             18  |   .0333645   .0446763     0.75   0.455    -.0541995    .1209285
             19  |   .0401376   .0313582     1.28   0.201    -.0213233    .1015985
             20  |  -.0006863   .0301337    -0.02   0.982    -.0597472    .0583746
             22  |  -.0037935    .029151    -0.13   0.896    -.0609284    .0533415
             23  |  -.0154542   .0292095    -0.53   0.597    -.0727038    .0417954
             26  |  -.0409215   .0372417    -1.10   0.272    -.1139138    .0320708
             27  |    .053396   .0295183     1.81   0.070    -.0044588    .1112508
             28  |  -.0905328   .0606798    -1.49   0.136     -.209463    .0283973
             29  |    .148424   .0377517     3.93   0.000      .074432     .222416
             30  |  -.0089671   .0310546    -0.29   0.773     -.069833    .0518989
             31  |   .0787124   .0356722     2.21   0.027     .0087962    .1486287
             33  |   .1776875   .0417197     4.26   0.000     .0959185    .2594566
             34  |   .1204773   .0732883     1.64   0.100    -.0231651    .2641197
             35  |   .0263402   .0342847     0.77   0.442    -.0408566    .0935371
             37  |   .0565313   .0263539     2.15   0.032     .0048786     .108184
             39  |   .1532678   .0978257     1.57   0.117     -.038467    .3450026
             40  |   .0251009   .0275116     0.91   0.362    -.0288209    .0790226
             41  |   .0638164   .0507098     1.26   0.208     -.035573    .1632058
             44  |  -.3251124   .1082911    -3.00   0.003    -.5373591   -.1128657
             45  |   .0205338   .0326722     0.63   0.530    -.0435025    .0845701
             46  |    .160649   .0591855     2.71   0.007     .0446476    .2766505
             49  |  -.0094294   .0501471    -0.19   0.851    -.1077159    .0888572
             50  |   .1313747   .0342221     3.84   0.000     .0643006    .1984488
             51  |   .0487631   .0302823     1.61   0.107     -.010589    .1081153
             52  |   .0069189   .0326689     0.21   0.832     -.057111    .0709488
             53  |   -.001618   .0304502    -0.05   0.958    -.0612992    .0580632
             54  |   .0384879   .0291089     1.32   0.186    -.0185644    .0955402
             55  |   .0731123   .0608473     1.20   0.230    -.0461462    .1923708
             56  |   .0656505   .0853148     0.77   0.442    -.1015634    .2328643
             57  |   .0310206   .0492127     0.63   0.528    -.0654345    .1274757
             58  |   .1449909   .0387659     3.74   0.000     .0690112    .2209706
             59  |  -.0699147   .1006199    -0.69   0.487     -.267126    .1272967
             60  |     -.0279   .0339965    -0.82   0.412     -.094532    .0387319
             62  |    .007089    .037765     0.19   0.851    -.0669291    .0811072
             63  |   .0946544   .0403222     2.35   0.019     .0156244    .1736843
             65  |   .0081776   .0327049     0.25   0.803    -.0559229    .0722781
             66  |   .1662942   .0322711     5.15   0.000      .103044    .2295444
             67  |  -.0116125   .0298762    -0.39   0.698    -.0701689    .0469438
             68  |  -.0035924   .0297088    -0.12   0.904    -.0618206    .0546359
             69  |  -.0474068   .0880717    -0.54   0.590    -.2200242    .1252106
             70  |   .0902161   .0298148     3.03   0.002     .0317802    .1486521
             71  |  -.0949128   .0310808    -3.05   0.002      -.15583   -.0339956
             74  |   .0455349   .0264831     1.72   0.086     -.006371    .0974408
             75  |   .1209061   .0643097     1.88   0.060    -.0051386    .2469508
             76  |   .1207171   .0442349     2.73   0.006     .0340184    .2074159
             77  |   .0385638   .0349209     1.10   0.269    -.0298798    .1070074
                 |
           _cons |  -.3673088   .1241373    -2.96   0.003    -.6106136   -.1240041
    -------------+----------------------------------------------------------------
         sigma_u |  .07688877
         sigma_e |  .06860304
             rho |   .5567657   (fraction of variance due to u_i)
    ------------------------------------------------------------------------------
    
    . est store random 
    
    . 
    . *Hausman test 
    . hausman fixed random 
    
    Note: the rank of the differenced variance matrix (16) does not equal the number of coefficients being tested (18); be sure this is what you expect, or there may be problems
            computing the test.  Examine the output of your estimators for anything unexpected and possibly consider scaling your variables so that the coefficients are on a
            similar scale.
    
                     ---- Coefficients ----
                 |      (b)          (B)            (b-B)     sqrt(diag(V_b-V_B))
                 |     fixed        random       Difference       Std. err.
    -------------+----------------------------------------------------------------
             ESG |   -2.39e-06     .0001875       -.0001899         .000049
            SIZE |   -.0109689    -.0100899        -.000879        .0020455
             Age |    .0692884     .0000215         .069267        .0525641
            TDTA |    .0103895    -.0041148        .0145043        .0044828
             RDS |    .0000673     .0000451        .0000221        .0000266
              CR |    .0009998     .0011442       -.0001443        .0003749
         CAPEXTA |   -.0738388    -.0509159       -.0229229        .0141775
             HDI |   -.0879332     .1542254       -.2421586        .0404251
     GDPPCgrowth |    .1709007     .1552501        .0156506        .0072427
           KOFGI |    .0048154     .0044576        .0003577        .0002476
              FY |
           2014  |   -.0654977     .0035742        -.069072         .052518
           2015  |    -.129166     .0082835       -.1374495         .105065
           2016  |    -.200469     .0056978       -.2061667        .1576435
           2017  |   -.2714317     .0016247       -.2730564        .2102164
           2018  |   -.3578895    -.0152687       -.3426208        .2627555
           2019  |   -.4294352    -.0186997       -.4107355        .3153166
           2020  |   -.5104639    -.0290688       -.4813951        .3678556
           2021  |   -.5940772    -.0430519       -.5510253        .4204454
    ------------------------------------------------------------------------------
                              b = Consistent under H0 and Ha; obtained from xtreg.
               B = Inconsistent under Ha, efficient under H0; obtained from xtreg.
    
    Test of H0: Difference in coefficients not systematic
    
       chi2(16) = (b-B)'[(V_b-V_B)^(-1)](b-B)
                = 113.14
    Prob > chi2 = 0.0000
    
    . 
    . *Multi-level vs. single-level
    . mixed winsor_g || ISO_Head:
    
    Performing EM optimization ...
    
    Performing gradient-based optimization: 
    Iteration 0:  Log likelihood =  26294.384  
    Iteration 1:  Log likelihood =  26294.384  
    
    Computing standard errors ...
    
    Mixed-effects ML regression                          Number of obs    = 31,006
    Group variable: ISO_Head                             Number of groups =     77
                                                         Obs per group:
                                                                      min =      1
                                                                      avg =  402.7
                                                                      max =  9,354
                                                         Wald chi2(0)     =      .
    Log likelihood =  26294.384                          Prob > chi2      =      .
    
    ------------------------------------------------------------------------------
        winsor_g | Coefficient  Std. err.      z    P>|z|     [95% conf. interval]
    -------------+----------------------------------------------------------------
           _cons |  -.0568708   .0065113    -8.73   0.000    -.0696327   -.0441089
    ------------------------------------------------------------------------------
    
    ------------------------------------------------------------------------------
      Random-effects parameters  |   Estimate   Std. err.     [95% conf. interval]
    -----------------------------+------------------------------------------------
    ISO_Head: Identity           |
                      var(_cons) |   .0028039   .0005443      .0019166    .0041021
    -----------------------------+------------------------------------------------
                   var(Residual) |    .010654   .0000857      .0104874    .0108233
    ------------------------------------------------------------------------------
    LR test vs. linear model: chibar2(01) = 1476.02       Prob >= chibar2 = 0.0000
    
    . estat icc
    
    Intraclass correlation
    
    ------------------------------------------------------------------------------
                           Level |        ICC   Std. err.     [95% conf. interval]
    -----------------------------+------------------------------------------------
                        ISO_Head |   .2083469   .0320601      .1524014    .2780913
    ------------------------------------------------------------------------------
    
    . 
    . *Multilevl model with year and industry fixed effects 
    . mixed winsor_g ESG SIZE Age TDTA RDS CR CAPEXTA HDI GDPPCgrowth KOFGI i.FY i.Industry_ID || ISO_Head:
    
    Performing EM optimization ...
    
    Performing gradient-based optimization: 
    Iteration 0:  Log likelihood =  21310.829  
    Iteration 1:  Log likelihood =  21310.829  
    
    Computing standard errors ...
    
    Mixed-effects ML regression                         Number of obs    =  22,590
    Group variable: ISO_Head                            Number of groups =      61
                                                        Obs per group:
                                                                     min =       1
                                                                     avg =   370.3
                                                                     max =   6,785
                                                        Wald chi2(46)    = 2024.77
    Log likelihood =  21310.829                         Prob > chi2      =  0.0000
    
    ------------------------------------------------------------------------------
        winsor_g | Coefficient  Std. err.      z    P>|z|     [95% conf. interval]
    -------------+----------------------------------------------------------------
             ESG |   .0002938   .0000409     7.19   0.000     .0002137    .0003739
            SIZE |  -.0093939    .000583   -16.11   0.000    -.0105366   -.0082513
             Age |   .0000485    .000025     1.94   0.052    -5.06e-07    .0000975
            TDTA |  -.0223034   .0035677    -6.25   0.000    -.0292959   -.0153109
             RDS |   .0000662   .0001153     0.57   0.566    -.0001597    .0002921
              CR |   .0007453   .0003997     1.86   0.062    -.0000382    .0015287
         CAPEXTA |  -.0269738   .0127314    -2.12   0.034    -.0519269   -.0020207
             HDI |   .2137668   .0862447     2.48   0.013     .0447302    .3828033
     GDPPCgrowth |   .1010101   .0409246     2.47   0.014     .0207993    .1812209
           KOFGI |   .0010835   .0008372     1.29   0.196    -.0005575    .0027245
                 |
              FY |
           2014  |   .0065828   .0034156     1.93   0.054    -.0001117    .0132773
           2015  |    .011849   .0033438     3.54   0.000     .0052954    .0184027
           2016  |   .0117035   .0032994     3.55   0.000     .0052368    .0181702
           2017  |   .0032649   .0032144     1.02   0.310    -.0030351    .0095649
           2018  |  -.0084931   .0032685    -2.60   0.009    -.0148993   -.0020869
           2019  |  -.0121533   .0032326    -3.76   0.000    -.0184891   -.0058176
           2020  |   -.023709   .0038786    -6.11   0.000    -.0313109    -.016107
           2021  |  -.0340569   .0034152    -9.97   0.000    -.0407505   -.0273633
                 |
     Industry_ID |
              2  |   .0601981   .0100782     5.97   0.000     .0404452    .0799511
              3  |   .0660787   .0939344     0.70   0.482    -.1180293    .2501867
              4  |   .0204559   .0045417     4.50   0.000     .0115544    .0293574
              5  |  -.0035117   .0045484    -0.77   0.440    -.0124265     .005403
              6  |   .0100505   .0060274     1.67   0.095    -.0017631    .0218641
              7  |   .0467232   .0040959    11.41   0.000     .0386955     .054751
              8  |   .0257573   .0043281     5.95   0.000     .0172743    .0342403
              9  |   .0309369   .0043936     7.04   0.000     .0223256    .0395482
             10  |   .0017321    .004921     0.35   0.725    -.0079128     .011377
             11  |   .0026584   .0044756     0.59   0.553    -.0061136    .0114305
             12  |   .0466072    .004337    10.75   0.000     .0381068    .0551076
             13  |   .0265765   .0044471     5.98   0.000     .0178603    .0352928
             14  |    .025399   .0041886     6.06   0.000     .0171895    .0336085
             15  |   .0328156   .0060624     5.41   0.000     .0209335    .0446977
             16  |   .0321594   .0056216     5.72   0.000     .0211413    .0431776
             17  |   .0149714   .0079179     1.89   0.059    -.0005475    .0304902
             18  |     .03626   .0061815     5.87   0.000     .0241444    .0483755
             19  |   .0454169   .0134931     3.37   0.001     .0189708    .0718629
             21  |  -.0092164   .0334052    -0.28   0.783    -.0746895    .0562566
             22  |   .0449322   .0044642    10.06   0.000     .0361825    .0536818
             23  |   .0356056   .0045374     7.85   0.000     .0267126    .0444987
             24  |    .042552   .0043619     9.76   0.000     .0340028    .0511011
             25  |      .0556   .0042607    13.05   0.000     .0472492    .0639508
             26  |    .077396   .0128278     6.03   0.000     .0522539    .1025381
             27  |    .018252    .005089     3.59   0.000     .0082777    .0282262
             28  |  -.0063825   .0043704    -1.46   0.144    -.0149483    .0021834
             29  |   .0132645   .0047977     2.76   0.006     .0038612    .0226678
             30  |   .0268071   .0129162     2.08   0.038     .0014919    .0521224
                 |
           _cons |  -.1352934   .0590556    -2.29   0.022    -.2510402   -.0195465
    ------------------------------------------------------------------------------
    
    ------------------------------------------------------------------------------
      Random-effects parameters  |   Estimate   Std. err.     [95% conf. interval]
    -----------------------------+------------------------------------------------
    ISO_Head: Identity           |
                      var(_cons) |    .002443   .0006309      .0014727    .0040526
    -----------------------------+------------------------------------------------
                   var(Residual) |   .0087957   .0000829      .0086347    .0089598
    ------------------------------------------------------------------------------
    LR test vs. linear model: chibar2(01) = 974.72        Prob >= chibar2 = 0.0000
    As you can see, the random effects (GLS/ML) and the multilevel model provide highly significant coefficients for ESG. In contrast, the ESG coefficient in the fixed effects model is highly insignificant. However, the Hausman test seems to favor firm fixed effects.

    I do not understand why results differ that much depending on the model used! Does this mean that I should not use the random effects (GLS/ML) or multilevel model? Or is it more likely that the fixed effects model is inappropriate in this case? For example, I thought that the ESG variable within a company might not change enough over time, and, therefore, the firm-fixed effects model might not be appropriate.

    So I would like to know the following:
    1) Do I have fundamentally wrong intuitions or fundamentally wrong code?

    2) How should I determine which of these models is most appropriate, and how can I justify my decision?

    3) Does my research question, sample size, or a similar factor already make one model theoretically preferable?

    4) Are there any other reasons (that I could test) why the models mentioned are or are not suitable?

    5) As a previous paper uses a multilevel regression with random intercept modeling (and year and industry fixed effects) when analyzing the effect of time-invariant variables (like cultural values) on the described relationship, I planned on applying this multilevel model on all my regressions (with the idea of having one consistent approach for all hypotheses/regressions) but am now unsure if that is a good approach.

    Thank you very much for your help! Please contact me anytime if this description is too unclear or contains too little information to answer my question!

    Kind regards
    Fabian Büchi

  • #2
    Fabian:
    welcome to this forum.
    What strikes me is that, despite your large sample, you used default instead of cluster-robust standard errors.
    However, switching from default to mom-default standard errors implies that you can compare -fe- vs. -re- via the community-contributed module -xtoverid- (just type -search xtoverid- to spot and install it).
    In addition, if the literature in your research field uses mixed models, this might be a good reason to follow its methodological footsteps.
    Kind regards,
    Carlo
    (Stata 19.0)

    Comment


    • #3
      Dear Carlo

      Thank you very much for your quick reply. Since I still can't fully understand whether the fixed effects model might not be suitable in my specific case and why the fixed effects model comes to strongly contradicting results, I have decided that I will probably continue with a multilevel (mixed) model (to be able to use a consistent model for all research questions and be in line with some previous work). This is despite the fact that Hausmann and -xtoverid with P-value = 0.0000 seem to prefer the fixed effects model over the random effects model. However, as this is my first time running a panel regression, I am very unsure whether I have understood the multilevel model correctly. Since the mixed model already explicitly incorporates the nested/clustered data structure, it is not possible to implement cluster-robust standard errors. Should I, therefore, simply include robust standard errors with vce(robust)? I am also unsure whether, with my panel dataset, it is better to allow both || ISO_Head: || ISINID: random intercepts or only || ISO_Head: random intercepts? Thank you very much for your help! Below you can see the code regarding my questions (first three mixed models followed by the simple pooled OLS, which I added as an additional reference):

      Code:
      . *Multilevel regression with random intercept modelling and year and industry fixed effects: 
      . mixed winsor_g ESG SIZE Age TDTA RDS MRDS CR CAPEXTA HDI GDPPCgrowth KOFGI i.FY i.Industry_ID || ISO_Head: || ISINID:, vce(robust)
      
      Performing EM optimization ...
      
      Performing gradient-based optimization: 
      Iteration 0:  Log pseudolikelihood =  24093.578  
      Iteration 1:  Log pseudolikelihood =  24093.578  
      
      Computing standard errors ...
      
      Mixed-effects regression                              Number of obs =   22,589
      
              Grouping information
              -------------------------------------------------------------
                              |     No. of       Observations per group
               Group variable |     groups    Minimum    Average    Maximum
              ----------------+--------------------------------------------
                     ISO_Head |         61          1      370.3      6,785
                       ISINID |      5,230          1        4.3          9
              -------------------------------------------------------------
      
                                                            Wald chi2(47) = 4.04e+06
      Log pseudolikelihood =  24093.578                     Prob > chi2   =   0.0000
      
                                    (Std. err. adjusted for 61 clusters in ISO_Head)
      ------------------------------------------------------------------------------
                   |               Robust
          winsor_g | Coefficient  std. err.      z    P>|z|     [95% conf. interval]
      -------------+----------------------------------------------------------------
               ESG |   .0001899   .0000508     3.74   0.000     .0000903    .0002895
              SIZE |  -.0100256   .0024878    -4.03   0.000    -.0149015   -.0051496
               Age |    .000019   .0000733     0.26   0.796    -.0001247    .0001627
              TDTA |  -.0052144   .0057154    -0.91   0.362    -.0164164    .0059877
               RDS |   .0002632     .00067     0.39   0.694      -.00105    .0015764
              MRDS |   -.003946   .0033975    -1.16   0.245     -.010605     .002713
                CR |   .0011459     .00034     3.37   0.001     .0004796    .0018123
           CAPEXTA |   -.050738   .0198029    -2.56   0.010     -.089551   -.0119249
               HDI |  -.0201221   .1363349    -0.15   0.883    -.2873337    .2470895
       GDPPCgrowth |   .1487694    .046207     3.22   0.001     .0582053    .2393335
             KOFGI |   .0026722   .0018415     1.45   0.147    -.0009371    .0062815
                   |
                FY |
             2014  |    .004861   .0025166     1.93   0.053    -.0000715    .0097935
             2015  |   .0101099   .0040516     2.50   0.013     .0021689    .0180508
             2016  |   .0087454    .002766     3.16   0.002     .0033242    .0141666
             2017  |   .0054365    .002601     2.09   0.037     .0003385    .0105344
             2018  |  -.0106445   .0042091    -2.53   0.011    -.0188942   -.0023948
             2019  |  -.0140503   .0032291    -4.35   0.000    -.0203793   -.0077213
             2020  |  -.0265955   .0044192    -6.02   0.000    -.0352569   -.0179341
             2021  |  -.0394213    .003925   -10.04   0.000    -.0471142   -.0317285
                   |
       Industry_ID |
                2  |   .0701736   .0122142     5.75   0.000     .0462343     .094113
                3  |   .0718927   .0090204     7.97   0.000     .0542131    .0895724
                4  |   .0223146   .0140837     1.58   0.113     -.005289    .0499183
                5  |  -.0061426   .0092296    -0.67   0.506    -.0242323     .011947
                6  |   .0040041   .0181116     0.22   0.825     -.031494    .0395023
                7  |   .0546543   .0088418     6.18   0.000     .0373246     .071984
                8  |   .0246127   .0127445     1.93   0.053    -.0003662    .0495915
                9  |   .0412199   .0105255     3.92   0.000     .0205903    .0618495
               10  |   .0046029    .014396     0.32   0.749    -.0236128    .0328186
               11  |   .0086402   .0116054     0.74   0.457    -.0141059    .0313863
               12  |   .0545832   .0084564     6.45   0.000      .038009    .0711575
               13  |   .0368719   .0123212     2.99   0.003     .0127229     .061021
               14  |   .0362153   .0076324     4.74   0.000     .0212562    .0511745
               15  |   .0402166   .0115208     3.49   0.000     .0176363    .0627969
               16  |   .0475337   .0140916     3.37   0.001     .0199147    .0751528
               17  |   .0216768   .0131153     1.65   0.098    -.0040288    .0473823
               18  |   .0400521   .0118288     3.39   0.001      .016868    .0632361
               19  |   .0469036   .0156785     2.99   0.003     .0161742     .077633
               21  |  -.0179656   .0479315    -0.37   0.708    -.1119095    .0759784
               22  |   .0516322   .0097603     5.29   0.000     .0325025     .070762
               23  |   .0453995   .0102732     4.42   0.000     .0252644    .0655345
               24  |   .0556976   .0129868     4.29   0.000      .030244    .0811511
               25  |   .0677483   .0078033     8.68   0.000     .0524541    .0830424
               26  |   .0853507   .0151074     5.65   0.000     .0557407    .1149607
               27  |    .024016   .0089196     2.69   0.007     .0065339    .0414982
               28  |  -.0099476   .0140723    -0.71   0.480    -.0375288    .0176337
               29  |   .0120758   .0258726     0.47   0.641    -.0386335    .0627851
               30  |   .0323749   .0191854     1.69   0.092    -.0052278    .0699776
                   |
             _cons |  -.0462421   .0869709    -0.53   0.595     -.216702    .1242178
      ------------------------------------------------------------------------------
      
      ------------------------------------------------------------------------------
                                   |               Robust           
        Random-effects parameters  |   Estimate   std. err.     [95% conf. interval]
      -----------------------------+------------------------------------------------
      ISO_Head: Identity           |
                        var(_cons) |   .0019447   .0008182      .0008526    .0044358
      -----------------------------+------------------------------------------------
      ISINID: Identity             |
                        var(_cons) |   .0050728   .0004864      .0042037    .0061216
      -----------------------------+------------------------------------------------
                     var(Residual) |   .0048062   .0005639      .0038188    .0060489
      ------------------------------------------------------------------------------
      
      . 
      . mixed winsor_g ESG SIZE Age TDTA RDS MRDS CR CAPEXTA HDI GDPPCgrowth KOFGI i.FY i.Industry_ID || ISO_Head: || ISINID:
      
      Performing EM optimization ...
      
      Performing gradient-based optimization: 
      Iteration 0:  Log likelihood =  24093.578  
      Iteration 1:  Log likelihood =  24093.578  
      
      Computing standard errors ...
      
      Mixed-effects ML regression                            Number of obs =  22,589
      
              Grouping information
              -------------------------------------------------------------
                              |     No. of       Observations per group
               Group variable |     groups    Minimum    Average    Maximum
              ----------------+--------------------------------------------
                     ISO_Head |         61          1      370.3      6,785
                       ISINID |      5,230          1        4.3          9
              -------------------------------------------------------------
      
                                                             Wald chi2(47) = 1868.68
      Log likelihood =  24093.578                            Prob > chi2   =  0.0000
      
      ------------------------------------------------------------------------------
          winsor_g | Coefficient  Std. err.      z    P>|z|     [95% conf. interval]
      -------------+----------------------------------------------------------------
               ESG |   .0001899   .0000541     3.51   0.000     .0000838     .000296
              SIZE |  -.0100256   .0008875   -11.30   0.000    -.0117649   -.0082862
               Age |    .000019   .0000474     0.40   0.688    -.0000738    .0001118
              TDTA |  -.0052144   .0047658    -1.09   0.274    -.0145551    .0041264
               RDS |   .0002632   .0017367     0.15   0.880    -.0031407    .0036671
              MRDS |   -.003946   .0019679    -2.01   0.045     -.007803    -.000089
                CR |   .0011459   .0004515     2.54   0.011     .0002611    .0020308
           CAPEXTA |   -.050738   .0137293    -3.70   0.000     -.077647   -.0238289
               HDI |  -.0201221   .0771527    -0.26   0.794    -.1713387    .1310945
       GDPPCgrowth |   .1487694   .0317841     4.68   0.000     .0864737    .2110651
             KOFGI |   .0026722   .0007217     3.70   0.000     .0012578    .0040867
                   |
                FY |
             2014  |    .004861   .0025791     1.88   0.059    -.0001941     .009916
             2015  |   .0101099   .0025625     3.95   0.000     .0050875    .0151323
             2016  |   .0087454   .0025585     3.42   0.001     .0037309    .0137599
             2017  |   .0054365   .0025291     2.15   0.032     .0004796    .0103934
             2018  |  -.0106445   .0025917    -4.11   0.000    -.0157241   -.0055649
             2019  |  -.0140503   .0026295    -5.34   0.000    -.0192041   -.0088965
             2020  |  -.0265955   .0031144    -8.54   0.000    -.0326996   -.0204913
             2021  |  -.0394213   .0028183   -13.99   0.000    -.0449451   -.0338975
                   |
       Industry_ID |
                2  |   .0701736   .0157239     4.46   0.000     .0393554    .1009919
                3  |   .0718927   .0997414     0.72   0.471    -.1235969    .2673823
                4  |   .0223146   .0080203     2.78   0.005     .0065951    .0380341
                5  |  -.0061426    .007656    -0.80   0.422    -.0211481    .0088629
                6  |   .0040041   .0108717     0.37   0.713     -.017304    .0253123
                7  |   .0546543   .0071276     7.67   0.000     .0406846    .0686241
                8  |   .0246127   .0074153     3.32   0.001     .0100789    .0391465
                9  |   .0412199   .0078621     5.24   0.000     .0258105    .0566293
               10  |   .0046029   .0087659     0.53   0.600     -.012578    .0217838
               11  |   .0086402   .0078439     1.10   0.271    -.0067336     .024014
               12  |   .0545832   .0075549     7.22   0.000     .0397758    .0693906
               13  |   .0368719   .0078634     4.69   0.000     .0214599    .0522839
               14  |   .0362153   .0073943     4.90   0.000     .0217227    .0507079
               15  |   .0402166   .0114063     3.53   0.000     .0178606    .0625726
               16  |   .0475337   .0103416     4.60   0.000     .0272646    .0678029
               17  |   .0216768   .0152543     1.42   0.155    -.0082212    .0515747
               18  |   .0400521   .0101421     3.95   0.000     .0201739    .0599303
               19  |   .0469036    .022544     2.08   0.037     .0027182     .091089
               21  |  -.0179656   .0418077    -0.43   0.667    -.0999072    .0639761
               22  |   .0516322   .0078781     6.55   0.000     .0361915     .067073
               23  |   .0453995   .0078646     5.77   0.000     .0299851    .0608138
               24  |   .0556976    .007534     7.39   0.000     .0409312     .070464
               25  |   .0677483   .0072727     9.32   0.000     .0534941    .0820024
               26  |   .0853507   .0224632     3.80   0.000     .0413237    .1293777
               27  |    .024016   .0096203     2.50   0.013     .0051606    .0428714
               28  |  -.0099476   .0078056    -1.27   0.203    -.0252463    .0053512
               29  |   .0120758   .0078458     1.54   0.124    -.0033018    .0274534
               30  |   .0323749   .0190344     1.70   0.089    -.0049318    .0696815
                   |
             _cons |  -.0462421   .0589836    -0.78   0.433    -.1618479    .0693637
      ------------------------------------------------------------------------------
      
      ------------------------------------------------------------------------------
        Random-effects parameters  |   Estimate   Std. err.     [95% conf. interval]
      -----------------------------+------------------------------------------------
      ISO_Head: Identity           |
                        var(_cons) |   .0019447   .0005277      .0011425      .00331
      -----------------------------+------------------------------------------------
      ISINID: Identity             |
                        var(_cons) |   .0050728   .0001417      .0048026    .0053582
      -----------------------------+------------------------------------------------
                     var(Residual) |   .0048062   .0000524      .0047045      .00491
      ------------------------------------------------------------------------------
      LR test vs. linear model: chi2(2) = 6477.56               Prob > chi2 = 0.0000
      
      Note: LR test is conservative and provided only for reference.
      
      . 
      . mixed winsor_g ESG SIZE Age TDTA RDS MRDS CR CAPEXTA HDI GDPPCgrowth KOFGI i.FY i.Industry_ID || ISO_Head: 
      
      Performing EM optimization ...
      
      Performing gradient-based optimization: 
      Iteration 0:  Log likelihood =  21327.316  
      Iteration 1:  Log likelihood =  21327.316  
      
      Computing standard errors ...
      
      Mixed-effects ML regression                         Number of obs    =  22,589
      Group variable: ISO_Head                            Number of groups =      61
                                                          Obs per group:
                                                                       min =       1
                                                                       avg =   370.3
                                                                       max =   6,785
                                                          Wald chi2(47)    = 2063.41
      Log likelihood =  21327.316                         Prob > chi2      =  0.0000
      
      ------------------------------------------------------------------------------
          winsor_g | Coefficient  Std. err.      z    P>|z|     [95% conf. interval]
      -------------+----------------------------------------------------------------
               ESG |   .0002714    .000041     6.62   0.000      .000191    .0003517
              SIZE |    -.00953   .0005831   -16.34   0.000    -.0106728   -.0083872
               Age |   .0000507    .000025     2.03   0.042     1.75e-06    .0000997
              TDTA |  -.0218597   .0035659    -6.13   0.000    -.0288487   -.0148707
               RDS |   .0006981   .0018079     0.39   0.699    -.0028454    .0042417
              MRDS |  -.0102176   .0017153    -5.96   0.000    -.0135795   -.0068557
                CR |   .0005722   .0004007     1.43   0.153    -.0002131    .0013574
           CAPEXTA |  -.0270664   .0127225    -2.13   0.033    -.0520021   -.0021307
               HDI |   .1790141    .085623     2.09   0.037      .011196    .3468322
       GDPPCgrowth |   .1018203   .0408887     2.49   0.013       .02168    .1819606
             KOFGI |   .0011481     .00083     1.38   0.167    -.0004787    .0027748
                   |
                FY |
             2014  |   .0057555   .0034155     1.69   0.092    -.0009388    .0124498
             2015  |   .0108348    .003345     3.24   0.001     .0042787     .017391
             2016  |   .0111595   .0032968     3.38   0.001      .004698     .017621
             2017  |   .0032558   .0032093     1.01   0.310    -.0030343     .009546
             2018  |  -.0083057   .0032485    -2.56   0.011    -.0146726   -.0019388
             2019  |  -.0126351   .0032266    -3.92   0.000    -.0189591   -.0063111
             2020  |  -.0243502   .0038749    -6.28   0.000    -.0319448   -.0167555
             2021  |  -.0347179   .0034112   -10.18   0.000    -.0414037   -.0280321
                   |
       Industry_ID |
                2  |    .056274   .0100922     5.58   0.000     .0364936    .0760544
                3  |   .0659685   .0938661     0.70   0.482    -.1180057    .2499427
                4  |     .01692   .0045769     3.70   0.000     .0079495    .0258905
                5  |  -.0040072   .0045458    -0.88   0.378    -.0129168    .0049024
                6  |   .0101852    .006023     1.69   0.091    -.0016198    .0219901
                7  |   .0437887   .0041224    10.62   0.000     .0357091    .0518684
                8  |   .0262156   .0043256     6.06   0.000     .0177376    .0346936
                9  |   .0317281   .0043923     7.22   0.000     .0231192    .0403369
               10  |  -.0012814   .0049365    -0.26   0.795    -.0109568     .008394
               11  |   .0020167   .0044736     0.45   0.652    -.0067514    .0107847
               12  |   .0466105   .0043338    10.76   0.000     .0381165    .0551045
               13  |    .027453   .0044465     6.17   0.000     .0187381     .036168
               14  |   .0244531   .0041884     5.84   0.000     .0162439    .0326623
               15  |    .029562   .0060823     4.86   0.000     .0176409    .0414831
               16  |   .0323635   .0056217     5.76   0.000     .0213452    .0433818
               17  |   .0128829   .0079197     1.63   0.104    -.0026394    .0284051
               18  |   .0379876   .0059852     6.35   0.000     .0262568    .0497184
               19  |   .0454977   .0134833     3.37   0.001     .0190711    .0719244
               21  |   -.011086   .0333824    -0.33   0.740    -.0765144    .0543423
               22  |   .0413423   .0045012     9.18   0.000       .03252    .0501645
               23  |   .0309268   .0045769     6.76   0.000     .0219562    .0398973
               24  |   .0370338   .0044566     8.31   0.000      .028299    .0457685
               25  |   .0520725   .0043001    12.11   0.000     .0436444    .0605006
               26  |   .0759408   .0128218     5.92   0.000     .0508104    .1010712
               27  |   .0180374   .0050851     3.55   0.000     .0080708     .028004
               28  |  -.0055303   .0043695    -1.27   0.206    -.0140943    .0030336
               29  |   .0141891   .0047963     2.96   0.003     .0047886    .0235897
               30  |   .0262881   .0129069     2.04   0.042     .0009909    .0515852
                   |
             _cons |  -.0964183   .0585661    -1.65   0.100    -.2112057    .0183691
      ------------------------------------------------------------------------------
      
      ------------------------------------------------------------------------------
        Random-effects parameters  |   Estimate   Std. err.     [95% conf. interval]
      -----------------------------+------------------------------------------------
      ISO_Head: Identity           |
                        var(_cons) |     .00235   .0005989      .0014261    .0038726
      -----------------------------+------------------------------------------------
                     var(Residual) |    .008783   .0000828      .0086221    .0089468
      ------------------------------------------------------------------------------
      LR test vs. linear model: chibar2(01) = 945.03        Prob >= chibar2 = 0.0000
      
      *Pooled OLS model with year, industry and country fixed effects, clustered by firm: 
      . xi: regress winsor_g ESG SIZE Age TDTA RDS MRDS CR CAPEXTA HDI GDPPCgrowth KOFGI i.FY i.Industry_ID i.Country_ID, cluster(ISINID)
      i.FY              _IFY_2013-2021      (naturally coded; _IFY_2013 omitted)
      i.Industry_ID     _IIndustry__1-30    (naturally coded; _IIndustry__1 omitted)
      i.Country_ID      _ICountry_I_1-77    (naturally coded; _ICountry_I_1 omitted)
      note: _ICountry_I_7 omitted because of collinearity.
      note: _ICountry_I_42 omitted because of collinearity.
      note: _ICountry_I_47 omitted because of collinearity.
      note: _ICountry_I_48 omitted because of collinearity.
      
      Linear regression                               Number of obs     =     22,589
                                                      F(101, 5229)      =          .
                                                      Prob > F          =          .
                                                      R-squared         =     0.1370
                                                      Root MSE          =     .09376
      
                                     (Std. err. adjusted for 5,230 clusters in ISINID)
      --------------------------------------------------------------------------------
                     |               Robust
            winsor_g | Coefficient  std. err.      t    P>|t|     [95% conf. interval]
      ---------------+----------------------------------------------------------------
                 ESG |   .0002717   .0000631     4.31   0.000     .0001481    .0003953
                SIZE |  -.0095179   .0009604    -9.91   0.000    -.0114007    -.007635
                 Age |   .0000496   .0000396     1.25   0.211    -.0000281    .0001274
                TDTA |  -.0219568   .0054116    -4.06   0.000    -.0325658   -.0113477
                 RDS |   .0006615   .0007471     0.89   0.376     -.000803     .002126
                MRDS |  -.0095701   .0022458    -4.26   0.000    -.0139727   -.0051675
                  CR |   .0005441   .0005456     1.00   0.319    -.0005254    .0016137
             CAPEXTA |  -.0266161   .0177924    -1.50   0.135    -.0614965    .0082644
                 HDI |   .5662321   .1751992     3.23   0.001     .2227685    .9096957
         GDPPCgrowth |    .108262   .0395463     2.74   0.006     .0307347    .1857894
               KOFGI |   .0022709   .0013225     1.72   0.086    -.0003218    .0048635
           _IFY_2014 |   .0037548   .0027148     1.38   0.167    -.0015674    .0090769
           _IFY_2015 |   .0077869   .0028963     2.69   0.007     .0021089     .013465
           _IFY_2016 |   .0065581   .0032662     2.01   0.045      .000155    .0129611
           _IFY_2017 |  -.0024695   .0034954    -0.71   0.480     -.009322    .0043831
           _IFY_2018 |  -.0152464   .0039277    -3.88   0.000    -.0229463   -.0075464
           _IFY_2019 |  -.0207296   .0041107    -5.04   0.000    -.0287884   -.0126709
           _IFY_2020 |  -.0295156    .004009    -7.36   0.000     -.037375   -.0216562
           _IFY_2021 |  -.0414364   .0039367   -10.53   0.000    -.0491538   -.0337189
       _IIndustry__2 |   .0558819   .0097086     5.76   0.000     .0368489    .0749148
       _IIndustry__3 |   .0667191   .0091355     7.30   0.000     .0488098    .0846285
       _IIndustry__4 |   .0167099   .0085587     1.95   0.051    -.0000687    .0334885
       _IIndustry__5 |  -.0036846   .0093448    -0.39   0.693    -.0220042    .0146351
       _IIndustry__6 |    .010067   .0108633     0.93   0.354    -.0112295    .0313635
       _IIndustry__7 |   .0439158   .0073127     6.01   0.000     .0295798    .0582518
       _IIndustry__8 |    .026322   .0079374     3.32   0.001     .0107614    .0418825
       _IIndustry__9 |   .0316677   .0085139     3.72   0.000     .0149768    .0483586
      _IIndustry__10 |  -.0010844   .0105531    -0.10   0.918     -.021773    .0196041
      _IIndustry__11 |    .002054   .0085684     0.24   0.811    -.0147436    .0188516
      _IIndustry__12 |   .0466538    .007759     6.01   0.000     .0314429    .0618647
      _IIndustry__13 |   .0272771   .0084407     3.23   0.001     .0107298    .0438244
      _IIndustry__14 |   .0242742   .0075913     3.20   0.001     .0093921    .0391563
      _IIndustry__15 |   .0295899   .0090228     3.28   0.001     .0119014    .0472784
      _IIndustry__16 |   .0322278   .0097319     3.31   0.001     .0131493    .0513063
      _IIndustry__17 |    .012555   .0131236     0.96   0.339    -.0131727    .0382828
      _IIndustry__18 |   .0379802   .0118682     3.20   0.001     .0147135    .0612469
      _IIndustry__19 |   .0454372   .0189442     2.40   0.016     .0082987    .0825757
      _IIndustry__21 |  -.0107562   .0495515    -0.22   0.828    -.1078978    .0863854
      _IIndustry__22 |   .0414806   .0074213     5.59   0.000     .0269318    .0560294
      _IIndustry__23 |   .0314579    .007741     4.06   0.000     .0162823    .0466334
      _IIndustry__24 |   .0371564   .0079842     4.65   0.000     .0215041    .0528087
      _IIndustry__25 |   .0522544   .0077555     6.74   0.000     .0370504    .0674584
      _IIndustry__26 |   .0757966   .0093686     8.09   0.000     .0574302    .0941631
      _IIndustry__27 |   .0179249   .0094033     1.91   0.057    -.0005095    .0363592
      _IIndustry__28 |  -.0055279   .0085508    -0.65   0.518    -.0222912    .0112353
      _IIndustry__29 |   .0141536   .0096284     1.47   0.142     -.004722    .0330292
      _IIndustry__30 |   .0261356   .0165736     1.58   0.115    -.0063557    .0586268
       _ICountry_I_2 |  -.1356425    .049927    -2.72   0.007    -.2335203   -.0377647
       _ICountry_I_3 |  -.0364243   .0446913    -0.82   0.415     -.124038    .0511894
       _ICountry_I_4 |  -.0151063   .0365673    -0.41   0.680    -.0867935    .0565808
       _ICountry_I_5 |  -.0376373   .0416499    -0.90   0.366    -.1192884    .0440138
       _ICountry_I_7 |          0  (omitted)
       _ICountry_I_8 |   .1060967   .0443745     2.39   0.017     .0191041    .1930894
       _ICountry_I_9 |   .0001005   .0370918     0.00   0.998    -.0726151     .072816
      _ICountry_I_10 |  -.0083633   .0408548    -0.20   0.838    -.0884558    .0717292
      _ICountry_I_11 |   .0094948   .0418141     0.23   0.820    -.0724783    .0914678
      _ICountry_I_12 |   .1409501     .04312     3.27   0.001     .0564169    .2254834
      _ICountry_I_13 |   .0672477   .0554218     1.21   0.225    -.0414022    .1758977
      _ICountry_I_14 |  -.1445652   .0541669    -2.67   0.008    -.2507549   -.0383755
      _ICountry_I_15 |  -.0302945   .0365738    -0.83   0.408    -.1019944    .0414053
      _ICountry_I_16 |  -.0146181   .0391772    -0.37   0.709    -.0914218    .0621857
      _ICountry_I_17 |  -.0075943   .0394988    -0.19   0.848    -.0850284    .0698398
      _ICountry_I_18 |   .0657958    .062619     1.05   0.293    -.0569636    .1885551
      _ICountry_I_19 |   .0250391   .0371983     0.67   0.501    -.0478851    .0979634
      _ICountry_I_20 |  -.0126497   .0386513    -0.33   0.743    -.0884224    .0631229
      _ICountry_I_22 |   .0044031   .0381975     0.12   0.908      -.07048    .0792863
      _ICountry_I_23 |  -.0249759   .0389806    -0.64   0.522    -.1013941    .0514422
      _ICountry_I_26 |  -.0349096   .0433095    -0.81   0.420    -.1198143     .049995
      _ICountry_I_27 |   .0040177   .0399321     0.10   0.920     -.074266    .0823014
      _ICountry_I_28 |  -.0238172   .0546031    -0.44   0.663    -.1308621    .0832276
      _ICountry_I_29 |   .1772073   .0496905     3.57   0.000     .0797931    .2746214
      _ICountry_I_30 |  -.0174259   .0399448    -0.44   0.663    -.0957345    .0608826
      _ICountry_I_31 |   .0397694   .0357393     1.11   0.266    -.0302946    .1098334
      _ICountry_I_33 |   .2265399   .0574634     3.94   0.000     .1138877    .3391921
      _ICountry_I_34 |   .0481393   .0380327     1.27   0.206    -.0264207    .1226993
      _ICountry_I_35 |   .0133853   .0414667     0.32   0.747    -.0679066    .0946773
      _ICountry_I_37 |   .0241885   .0355731     0.68   0.497    -.0455497    .0939267
      _ICountry_I_39 |   .2064796   .0645558     3.20   0.001     .0799232    .3330359
      _ICountry_I_40 |  -.0041811   .0366002    -0.11   0.909    -.0759327    .0675706
      _ICountry_I_41 |   .0336572    .040606     0.83   0.407    -.0459476     .113262
      _ICountry_I_42 |          0  (omitted)
      _ICountry_I_44 |  -.3378104   .0462017    -7.31   0.000    -.4283851   -.2472358
      _ICountry_I_45 |  -.0014455   .0376183    -0.04   0.969    -.0751932    .0723022
      _ICountry_I_46 |   .2116988   .0511355     4.14   0.000     .1114519    .3119458
      _ICountry_I_47 |          0  (omitted)
      _ICountry_I_48 |          0  (omitted)
      _ICountry_I_49 |  -.0175547   .0456613    -0.38   0.701    -.1070699    .0719605
      _ICountry_I_50 |   .1434558   .0416352     3.45   0.001     .0618333    .2250783
      _ICountry_I_51 |   .0911165   .0388788     2.34   0.019     .0148978    .1673352
      _ICountry_I_52 |  -.0084773   .0407735    -0.21   0.835    -.0884103    .0714558
      _ICountry_I_53 |  -.0276879   .0397389    -0.70   0.486    -.1055929     .050217
      _ICountry_I_54 |   .0042665   .0380439     0.11   0.911    -.0703155    .0788484
      _ICountry_I_55 |   .0214136    .056884     0.38   0.707    -.0901028    .1329299
      _ICountry_I_56 |   .0695013   .0382377     1.82   0.069    -.0054605    .1444631
      _ICountry_I_57 |   .0406929   .0601305     0.68   0.499    -.0771879    .1585737
      _ICountry_I_58 |   .1784119   .0497047     3.59   0.000       .08097    .2758538
      _ICountry_I_59 |  -.0124307   .0732943    -0.17   0.865    -.1561182    .1312568
      _ICountry_I_60 |  -.0230245   .0422348    -0.55   0.586    -.1058224    .0597734
      _ICountry_I_62 |   .0093025    .045623     0.20   0.838    -.0801377    .0987427
      _ICountry_I_63 |   .0802483   .0411512     1.95   0.051    -.0004252    .1609218
      _ICountry_I_65 |   .0135585   .0426969     0.32   0.751    -.0701452    .0972622
      _ICountry_I_66 |   .1240881   .0376535     3.30   0.001     .0502714    .1979047
      _ICountry_I_67 |  -.0260037   .0398232    -0.65   0.514    -.1040738    .0520665
      _ICountry_I_68 |  -.0241311   .0385456    -0.63   0.531    -.0996967    .0514344
      _ICountry_I_69 |  -.0755814   .0356388    -2.12   0.034    -.1454484   -.0057144
      _ICountry_I_70 |   .1037128   .0392428     2.64   0.008     .0267805    .1806452
      _ICountry_I_71 |  -.0846137   .0420724    -2.01   0.044    -.1670931   -.0021342
      _ICountry_I_74 |   .0221628   .0358784     0.62   0.537    -.0481739    .0924995
      _ICountry_I_75 |   .1183661   .0382754     3.09   0.002     .0433303    .1934019
      _ICountry_I_76 |   .1529585   .0583639     2.62   0.009     .0385409    .2673761
      _ICountry_I_77 |   .0870924    .046882     1.86   0.063    -.0048158    .1790007
               _cons |  -.5384314   .1784054    -3.02   0.003    -.8881805   -.1886824
      --------------------------------------------------------------------------------

      Comment


      • #4
        Fabian:
        1) quoting the -mixed- help file
        vce(robust) is specified, robust variances are clustered at the highest level in the multilevel model.
        ;
        2) I would not consider your research question suitable for a pooled OLS;
        3) if -fe- is the way to go, sticking with -re- causes your estimation to be undeliable;
        4) if the literature in your research field points towards -mixed- I'd follow this road;
        5) having random intercepts only or coupling them with random slopes (and at what level) depends on your research aim(s).
        Kind regards,
        Carlo
        (Stata 19.0)

        Comment

        Working...
        X