Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • Help with CFA code

    I run the following CFA code using sem. The model is not converging, I got a message saving "backed up". I am wondering of there is an issue with my code:

    Code:
    sem (Rloas -> lifeingeneralisterribler oftenviolenceistheonlyanswr igainpowerthroughmyassociatr iamangryfuriousormadalor ioftenfeelthatihavenocontr itismeagainsttheworldr  ifeelbetrayedbyalloflifer ihatethewholeworldr theworldisarottenplacer discoveringmyvaluesisacongr ioftenregretmychoicesr ifeellikeotherswalkalloverr iregularlyhavedisagreementswr complainingmakesmer somedaysidontlikemyselfr) ///
    (Rloweas -> icannamemytopfivestrengths icannamemycorevalues iknowmypurpose) ///
    (Rlowembrace -> iembodymystrengths nomatterthechaoshappeningar iremainpositiveeveninthemi iembodythegiftsihavetooff iembodymyvalues ///
    whaticreateinmylifeserves iampowerfuljustasiam ateachmomenticanofferwhat iknowhowtochoosewhatisbes iamgoodatenforcingmybounda ///
    igettochoosewhatmylifeloo icreatespaceformetobewho iknowwhereiendandothersbe) ///
    (Rlweoetas -> idontneedtoapologizebecausr thepainofthepastisusedto ifindithardtoapologizewhenr ifinditeasytoforgive iamstillholdinggrudgesagainr mypastpainfulexperiencesnol) ///
    (Elotas -> thereisapurposetoeverything ibelievethateverythinginlif allthingsthathappeninmylif whenlifepresentschallengesi eachmomentisperfectasitis ///
    icanallowwhatishereinthis isurrendertothemomentiami whateverhappensineachmoment iamatpeacewithmypast) ///
    (Allowing -> iusemyheadandmyhearttopr joycomeseasilytome ihavereverenceforallliving icancareaboutapersonandst iknowhowtobalancethehuman itakeabalancedapproachtomy ///
    ipartnerwithinfinitytocreat icanreceivehelpwhenneeded) (Emotional -> Rloas Rloweas Rlowembrace Rlweoetas Elotas Allowing) , covstruct(_lexogenous, diagonal) vce(sbentler)  ///
    standardized nomeans latent(Emotional Rloas Rloweas Rlowembrace Rlweoetas Elotas Allowing)  nocapslatent

  • #2
    Your model seems complicated. With maximum likelihood estimation (MLE), the algorithm aims to find parameter values that maximize the likelihood function, representing the probability of observing the given data under the assumed model. However, there is no guarantee that the optimization process will converge to the global maximum. Therefore, consider trying a simplified model and gradually building it up. Additionally, be aware that variables with very small or large values may need to be rescaled, as this can sometimes affect convergence.

    Comment


    • #3
      Thank you, Andrew. I will simplify the model.

      Comment

      Working...
      X