Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • Unbalanced panel data fixed effect regression (age and gender dependent variable)

    Dear stata experts,

    I hope everyone is doing well.

    I am trying to analyze the relationship between CEO age, Gender, and financial reporting quality (FRQ). I am investigating the relationship by including both CEO age and CEO gender as independent variable in the same model where FRQ is the dependent variable. I estimated OLS including Industry Fixed Effects and Year Fixed Effects. The co-efficient for both age and gender is positive and significant for the main analysis and a battery of additional analysis for alternative measures of FRQ. But when I include firm fixed effect instead of industry fixed effect, the co-efficient becomes insignificant/ and inconsistent between alternative measures of FRQ.

    One colleague suggested using logit model for CEO gender, and using sample of observations from years around CEO change.

    Please advise what may be the cause of such results and what can possibly be done to get consistent results, if any.

    For your kind information, T= 20, N=15,000, Number of Firm =1,300 Number of CEOs= 2,900.

    The example data is following

    * Example generated by -dataex-. For more info, type help dataex
    clear
    input long gvkey double(fyear tenure age) float(acc_con FRQ1 FRQ2 fin) str6 gender float growth
    1004 1994 2 64 .013411057 -.01445761 -.016000718 .01452747 "MALE" 10.702777
    1013 1993 5 45 .031962927 -.0241131 -.028054986 0 "MALE" 15.678555
    1013 1994 4 46 .04998015 -.02394609 -.028043434 0 "MALE" 22.56567
    1034 1994 5 66 .011116134 -.03049344 -.01667558 .27759245 "MALE" 38.74079
    1055 1993 2 42 .070407435 -.11691124 -.04107639 0 "MALE" 49.57965
    1055 1994 1 43 .05772815 -.11715856 -.0616904 .10737058 "MALE" 67.636154
    1078 1993 6 52 .007690612 -.015379924 -.010814613 .04156209 "MALE" 7.080198
    1078 1994 3 53 .0045946483 -.015231054 -.010987644 .012655032 "MALE" 8.898433
    1161 1993 5 57 -.01414187 -.031472735 -.07418257 .0030794654 "MALE" 8.834067
    1161 1994 2 58 -.021501655 -.03203603 -.06765337 .017183205 "MALE" 29.50827
    1203 1994 1 56 .029618626 -.01499509 -.018464886 .012009954 "MALE" 37.433224
    1209 1993 1 58 -.010534966 -.04317003 -.01868584 .05802793 "MALE" 3.431447
    1209 1994 8 59 -.01024618 -.04322805 -.019265603 .025336564 "MALE" 4.7360053
    1213 1993 7 56 -.004830632 -.034713276 -.033446636 0 "MALE" 15.877007
    1213 1994 1 57 -.004890278 -.029907364 -.037015453 .0435788 "MALE" 14.58028
    1230 1993 2 51 -.02156891 -.01885471 -.036723576 .073747486 "MALE" 1.1611264
    1230 1994 1 52 -.017615708 -.02071672 -.036124714 .0790411 "MALE" 16.598972
    1239 1993 1 74 .005957008 -.04369544 -.02168542 .05336348 "MALE" 5.19607
    1239 1994 10 42 -.003036958 -.04351002 -.02147372 .009465625 "MALE" 5.934635
    1240 1993 2 53 -.00747036 -.006110306 -.006830883 .07650471 "MALE" 10.910533
    1240 1994 8 54 -.007783341 -.006318838 -.006808233 .008235846 "MALE" 5.414398
    1243 1993 1 64 .007643901 -.01943049 -.018918635 .04220184 "MALE" -4.791996
    1243 1994 6 47 .009993883 -.019494485 -.01931703 .03393733 "MALE" 13.606194
    1254 1993 5 54 -.008314948 -.0235259 -.01498338 .04680045 "MALE" 31.61668
    1254 1994 1 55 .0025703476 -.02380211 -.015753035 .016039006 "MALE" 23.20782
    1281 1994 3 53 .03755007 -.018731136 -.01907864 0 "MALE" 18.326897
    1300 1993 1 59 .005551617 -.033754118 -.0427384 .012097146 "MALE" -1.7854177
    1300 1994 2 60 .013976213 -.035933506 -.04201439 .00061832 "MALE" 8.370677
    1318 1994 7 57 .005905546 -.02642074 -.02026653 .0858917 "MALE" 26.456324
    1356 1993 1 58 -.017036399 -.015539997 -.020128276 .0645 "MALE" -4.5893693
    1356 1994 3 59 -.007621051 -.01529318 -.01886772 .0400625 "MALE" 9.368473
    1359 1993 1 52 -.01908353 -.0353285 -.017224668 0 "MALE" -4.1098723
    1359 1994 2 56 -.02041266 -.03547517 -.01744214 .4069658 "MALE" 18.715744
    1372 1994 1 62 .02987902 -.016497795 -.1599977 0 "MALE" 22.10399
    1392 1993 3 53 -.16459185 -.05125584 -.0549377 0 "MALE" -33.437263
    1468 1993 6 54 .04606384 -.0092680175 -.011176224 .01247034 "MALE" 5.878594
    1468 1994 10 55 .07297094 -.00992416 -.011045543 .017547315 "MALE" 5.591244
    1478 1993 7 56 -.01029666 -.04210322 -.01988368 .032735065 "MALE" 5.476011
    1478 1994 5 57 .011259664 -.04260417 -.01947458 .3986064 "MALE" 7.96358
    1485 1993 2 64 .003382936 -.027342737 -.02338306 .03948744 "MALE" 4.997758
    1485 1994 3 47 .011513405 -.028275266 -.023375256 .032351054 "MALE" 7.33621
    1500 1994 1 53 .03912275 -.0306782 -.026986754 .05085216 "MALE" 26.326643
    1533 1993 5 66 -.13091263 -.033014085 -.01854372 0 "MALE" -9.290528
    1533 1994 3 67 -.16093872 -.032555066 -.02210931 0 "MALE" -10.525212
    1543 1993 1 57 .007236285 -.02892241 -.02098217 .4562579 "MALE" 3.281221
    1543 1994 2 58 .0015006282 -.0271884 -.01976661 .08855277 "MALE" 7.347172
    1573 1993 6 46 .02321819 -.006236822 -.009950805 .01443536 "MALE" -1.5103563
    1573 1994 1 47 .02568195 -.007725106 -.009926908 .07537439 "MALE" -2.176112
    1587 1994 2 56 -.003257459 -.02397682 -.023035357 .07217398 "MALE" 7.345129
    1598 1993 7 58 -.05253353 -.018448846 -.014669897 0 "MALE" -4.854134
    1598 1994 1 59 -.04168556 -.018238805 -.016049441 .6096134 "MALE" 10.3482
    1602 1993 5 58 -.002075554 -.0414236 -.02186679 .03005002 "MALE" 25.689886
    1608 1994 6 60 .005315556 -.016698197 -.015609668 .018919285 "MALE" 16.718466
    1609 1993 1 55 .005403719 -.007548312 -.006660404 .04609282 "MALE" .221519
    1609 1994 5 56 .005422147 -.00700167 -.006490586 .014940646 "MALE" 2.8102305
    1632 1993 3 59 .008193967 -.017593134 -.01603907 .11790854 "MALE" 17.451326
    1632 1994 2 60 -.021119174 -.017529614 -.01599627 .0005944567 "MALE" 16.081642
    1651 1993 3 59 -.002851426 -.02318044 -.02245915 0 "MALE" -2.531175
    1651 1994 8 60 .032060675 -.02317815 -.02207526 0 "MALE" 29.626524
    1655 1993 1 49 -.002706926 -.007599068 -.021033186 0 "MALE" -.8516766
    1655 1994 2 50 -.009628813 -.007193484 -.02007553 0 "MALE" 10.700308
    1661 1993 15 64 .04682803 -.0391083 -.0449363 .10999902 "MALE" 22.975056
    1661 1994 8 65 .010503584 -.03740831 -.04505412 .0003532633 "MALE" 20.030285
    1663 1993 2 56 -.020768566 -.008518427 -.010187315 .063343845 "MALE" .9794869
    1663 1994 3 57 -.017010279 -.008511785 -.010707838 .016495556 "MALE" 4.7673697
    1678 1993 2 71 -.0007349245 -.03924968 -.07645191 .1729608 "MALE" 9.46671
    1678 1994 6 72 -.008750218 -.036414284 -.07194993 .11935943 "MALE" 16.101542
    1686 1994 4 61 .05421029 -.009567019 -.016902126 .1393233 "MALE" 9.926294
    1690 1993 1 54 -.0005384435 -.017170332 -.021260686 0 "MALE" 12.56483
    1690 1994 1 51 .04814596 -.017739693 -.02544909 .05607566 "MALE" 15.191186
    1704 1993 6 55 .04080482 -.02438253 -.0187445 .004914511 "MALE" 43.74121
    1704 1994 5 56 .08200854 -.02493898 -.01862703 .0579057 "MALE" 53.67915
    1722 1993 5 75 .012343374 -.009090712 -.011072364 .06027717 "MALE" 6.281319
    1722 1994 6 76 .015124732 -.009157775 -.010944296 .0013720363 "MALE" 15.93061
    1743 1994 1 54 .04216493 -.015524905 -.01144775 .19330633 "MALE" 8.763382
    1755 1993 1 58 -.07493015 -.027585715 -.09116664 .065627135 "MALE" -19.75309
    1755 1994 5 56 -.008476923 -.02952896 -.06928208 .007752338 "MALE" -13.60577
    1762 1993 1 59 -.0289508 -.5080832 -1.906927 0 "MALE" -.9569397
    1762 1994 5 53 -.033236474 -.4950471 -1.8890734 0 "MALE" 9.000559
    1766 1993 1 54 -.00880902 -.01926175 -.014858779 0 "MALE" 16.726738
    1766 1994 4 55 -.016598823 -.019477237 -.0164081 0 "MALE" 10.888645
    1773 1993 7 52 .014554508 -.017431075 -.016635697 .05185998 "MALE" 56.36936
    1773 1994 6 53 .06159448 -.017644696 -.016280554 .02512343 "MALE" 83.3595
    1789 1993 3 59 .007127542 -.019053923 -.021647915 .12300976 "MALE" -9.01937
    1789 1994 2 60 -.003746348 -.020484246 -.021882944 .034961145 "MALE" 17.017687
    1794 1993 1 61 .003208979 -.04008762 -.025585845 .06142133 "MALE" .20072167
    1794 1994 2 62 .012914873 -.04424621 -.023868106 .013241616 "MALE" -1.1070228
    1848 1993 3 65 -.007173192 -.007174946 -.006254306 .05252365 "MALE" -1.7939782
    1848 1994 2 66 -.0037506786 -.0071143 -.006333144 .05190734 "MALE" -12.53127
    1849 1993 2 53 -.0226009 -.02776194 -.021665547 .035164423 "MALE" 22.44852
    1849 1994 5 54 -.0204152 -.025128 -.021587146 .08424735 "MALE" 8.190647
    1865 1993 1 58 .03848515 -.015646547 -.014545733 0 "MALE" 16.185265
    1865 1994 2 59 .023734903 -.015853211 -.01426912 0 "MALE" 26.2795
    1878 1993 6 45 -.04476048 -.02813105 -.020186406 0 "FEMALE" 13.868937
    1878 1994 8 46 -.035700817 -.0286049 -.020080864 0 "FEMALE" 11.119124
    1891 1993 2 64 -.007423002 -.03060707 -.02072413 0 "MALE" 14.573182
    1891 1994 3 65 .011815777 -.0305058 -.020702455 0 "MALE" 11.045914
    1913 1993 3 66 -.02111615 -.006276383 -.008573839 .06162294 "MALE" -.5413818
    1913 1994 4 67 -.011529914 -.00640573 -.009197468 .05700187 "MALE" 9.506653
    1919 1993 2 69 .02883697 -.015631061 -.016447838 0 "MALE" 27.228184
    end

  • #2
    Jahan:
    an idea might be:
    Code:
    . xtset gvkey fyear
    
    Panel variable: gvkey (unbalanced)
     Time variable: fyear, 1993 to 1994
             Delta: 1 unit
    
    . encode gender, g(num_gender)
    
    . xtreg FRQ1 i.num_gender i.fyear c.age##c.age growth acc_con , fe vce(cluster gvkey)
    note: 2.num_gender omitted because of collinearity.
    
    Fixed-effects (within) regression               Number of obs     =        100
    Group variable: gvkey                           Number of groups  =         57
    
    R-squared:                                      Obs per group:
         Within  = 0.0784                                         min =          1
         Between = 0.0133                                         avg =        1.8
         Overall = 0.0092                                         max =          2
    
                                                    F(5,56)           =       3.36
    corr(u_i, Xb) = -0.1140                         Prob > F          =     0.0100
    
                                     (Std. err. adjusted for 57 clusters in gvkey)
    ------------------------------------------------------------------------------
                 |               Robust
            FRQ1 | Coefficient  std. err.      t    P>|t|     [95% conf. interval]
    -------------+----------------------------------------------------------------
      num_gender |
           MALE  |          0  (omitted)
                 |
           fyear |
           1994  |   .0003788   .0003541     1.07   0.289    -.0003306    .0010881
                 |
             age |  -.0012543    .001456    -0.86   0.393     -.004171    .0016625
                 |
     c.age#c.age |   .0000107   .0000124     0.86   0.391    -.0000142    .0000357
                 |
          growth |  -5.52e-06   .0000257    -0.21   0.831     -.000057     .000046
         acc_con |   -.027696   .0104838    -2.64   0.011    -.0486976   -.0066944
           _cons |   .0014356   .0418143     0.03   0.973    -.0823284    .0851996
    -------------+----------------------------------------------------------------
         sigma_u |  .06549004
         sigma_e |  .00174614
             rho |   .9992896   (fraction of variance due to u_i)
    ------------------------------------------------------------------------------
    
    .
    Kind regards,
    Carlo
    (Stata 19.0)

    Comment


    • #3
      Dear Carlo,

      Thank you for the kind response. But unfortunately, I did not get consistent coefficients.

      Regards,
      Ismat

      Comment

      Working...
      X