Dear all
I am trying to eliminate the problem of Heteroskedasticity in my regression model. I have used Log, WLS, FGLS methods. None of the helped. So I used the robust standard error method. However, the standard errors I got from this method were almost the same as the original standard errors. Can I assume that the robust standard error method eliminated heteroskedasticity in my model?
. reg an_spending income age gender edu pur_freq gender_edu
Source | SS df MS Number of obs = 978
-------------+------------------------------ F( 6, 971) = 2059.19
Model | 2.4233e+10 6 4.0388e+09 Prob > F = 0.0000
Residual | 1.9045e+09 971 1961353.99 R-squared = 0.9271
-------------+------------------------------ Adj R-squared = 0.9267
Total | 2.6137e+10 977 26752609.4 Root MSE = 1400.5
------------------------------------------------------------------------------
an_spending | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
income | .0247537 .00194 12.76 0.000 .0209467 .0285608
age | 81.73533 3.261323 25.06 0.000 75.33528 88.13538
gender | -1273.963 123.972 -10.28 0.000 -1517.247 -1030.679
edu | 2267.413 127.8328 17.74 0.000 2016.553 2518.273
pur_freq | 16919.65 160.1966 105.62 0.000 16605.27 17234.02
gender_edu | 389.4784 179.4746 2.17 0.030 37.27553 741.6812
_cons | -5280.67 220.816 -23.91 0.000 -5714.001 -4847.338
------------------------------------------------------------------------------
reg an_spending income age gender edu pur_freq gender_edu, robust
Linear regression Number of obs = 978
F( 6, 971) = 1731.81
Prob > F = 0.0000
R-squared = 0.9271
Root MSE = 1400.5
------------------------------------------------------------------------------
| Robust
an_spending | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
income | .0247537 .0020335 12.17 0.000 .0207632 .0287442
age | 81.73533 3.534058 23.13 0.000 74.80006 88.6706
gender | -1273.963 127.4425 -10.00 0.000 -1524.057 -1023.868
edu | 2267.413 125.6639 18.04 0.000 2020.809 2514.017
pur_freq | 16919.65 194.0594 87.19 0.000 16538.82 17300.47
gender_edu | 389.4784 179.1607 2.17 0.030 37.89161 741.0651
_cons | -5280.67 222.5665 -23.73 0.000 -5717.437 -4843.903
------------------------------------------------------------------------------
I am trying to eliminate the problem of Heteroskedasticity in my regression model. I have used Log, WLS, FGLS methods. None of the helped. So I used the robust standard error method. However, the standard errors I got from this method were almost the same as the original standard errors. Can I assume that the robust standard error method eliminated heteroskedasticity in my model?
. reg an_spending income age gender edu pur_freq gender_edu
Source | SS df MS Number of obs = 978
-------------+------------------------------ F( 6, 971) = 2059.19
Model | 2.4233e+10 6 4.0388e+09 Prob > F = 0.0000
Residual | 1.9045e+09 971 1961353.99 R-squared = 0.9271
-------------+------------------------------ Adj R-squared = 0.9267
Total | 2.6137e+10 977 26752609.4 Root MSE = 1400.5
------------------------------------------------------------------------------
an_spending | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
income | .0247537 .00194 12.76 0.000 .0209467 .0285608
age | 81.73533 3.261323 25.06 0.000 75.33528 88.13538
gender | -1273.963 123.972 -10.28 0.000 -1517.247 -1030.679
edu | 2267.413 127.8328 17.74 0.000 2016.553 2518.273
pur_freq | 16919.65 160.1966 105.62 0.000 16605.27 17234.02
gender_edu | 389.4784 179.4746 2.17 0.030 37.27553 741.6812
_cons | -5280.67 220.816 -23.91 0.000 -5714.001 -4847.338
------------------------------------------------------------------------------
reg an_spending income age gender edu pur_freq gender_edu, robust
Linear regression Number of obs = 978
F( 6, 971) = 1731.81
Prob > F = 0.0000
R-squared = 0.9271
Root MSE = 1400.5
------------------------------------------------------------------------------
| Robust
an_spending | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
income | .0247537 .0020335 12.17 0.000 .0207632 .0287442
age | 81.73533 3.534058 23.13 0.000 74.80006 88.6706
gender | -1273.963 127.4425 -10.00 0.000 -1524.057 -1023.868
edu | 2267.413 125.6639 18.04 0.000 2020.809 2514.017
pur_freq | 16919.65 194.0594 87.19 0.000 16538.82 17300.47
gender_edu | 389.4784 179.1607 2.17 0.030 37.89161 741.0651
_cons | -5280.67 222.5665 -23.73 0.000 -5717.437 -4843.903
------------------------------------------------------------------------------
Comment