Hi
I am struggling with creating a survival graph after a logistic regression using the odds ratio. This is the sample of data I am working with:
Here event is the dependent variable and PI and DI are the explanatory variable. First I need to do a logistic regression using restricted cubic splines on PI and DI separately (mkspline command). Once done I would like to generate a graph like the one attached. It would be great if someone can help me with the process:

I am struggling with creating a survival graph after a logistic regression using the odds ratio. This is the sample of data I am working with:
Code:
* Example generated by -dataex-. For more info, type help dataex clear input byte diseasetype int(PI DI) byte Event 3 11 45 1 1 70 55 0 1 23 43 0 6 90 45 1 3 21 29 0 1 70 32 0 1 70 33 0 6 100 33 1 4 16 22 1 3 45 32 1 1 45 6 1 3 11 21 1 6 120 7 1 4 800 295 1 6 130 55 0 3 45 44 0 3 15 45 0 5 100 36 1 5 140 48 0 5 580 148 1 5 100 47 1 3 321 34 0 1 15 25 0 5 456 101 1 6 150 56 1 3 50 49 0 6 23 18 0 5 6 78 0 3 45 45 1 5 18 23 0 6 44 55 1 5 12 21 0 4 55 67 1 7 70 66 1 1 70 34 0 6 90 33 0 6 66 64 1 1 123 56 1 3 100 39 1 5 21 21 1 1 140 55 1 4 234 24 1 5 145 44 1 6 21 26 0 7 400 55 1 1 140 59 1 3 90 42 1 3 45 28 1 3 17 88 1 5 22 58 1 5 120 99 1 3 150 47 1 2 44 48 1 6 556 78 1 4 12 24 0 4 21 21 0 3 50 53 1 5 234 34 1 5 150 49 1 2 45 56 1 3 120 11 1 6 100 77 1 7 120 81 0 1 334 89 1 6 90 49 1 7 60 9 0 2 234 61 1 7 130 23 1 7 21 26 0 3 456 45 1 5 290 6 1 4 22 24 0 6 45 17 1 1 280 89 1 6 67 30 1 6 60 48 0 1 8 21 1 6 150 7 1 3 30 11 1 2 9 46 1 5 70 34 1 5 7 20 0 6 88 29 0 1 190 70 1 2 99 115 1 7 140 49 1 3 999 30 1 3 12 68 1 5 234 54 1 1 567 28 0 3 50 52 1 7 876 28 0 2 70 29 1 . 543 . . . . . . . 456 . . . . . . . 54 . . end
Here event is the dependent variable and PI and DI are the explanatory variable. First I need to do a logistic regression using restricted cubic splines on PI and DI separately (mkspline command). Once done I would like to generate a graph like the one attached. It would be great if someone can help me with the process: