Hello,
I'm analysing data for getting my master's degree and decided to work with multilevel analysis.
I have tranversal data from 165,007 children (lvl 1) grouped in 27 states (lvl 2). My outcome is their BMI (linear and cathegorical: 0 no obesity; 1 obesity) and height (linear and cathegorical: 0 no wasting; 1 wasting) and my exposure is their food consumption (10 yes/no questions on what they ate the day before). I also have contextual data from the 27 states (6 variables like state HDI and state access to health coverage percentage). My objective is to see if the correlation between what the child eats and their BMI and height varies between the states with different contextual status.
Can I, in the same command, use all 10 exposure variables + all 6 contextual variables for each of my outcomes?
Variables:
Outcome #1: z_altidade
Outcome #2: z_imcidade
Adjusting variable #1: idade
Adjusting variable #2: sexo
Exposure #1: ind_feijao
Exposure #2: ind_fruta
Exposure #3: ind_verdura
Exposure #4: ind_bebida
Exposure #5: ind_macarrao
Exposure #6: ind_doces
Exposure #7: ind_embutido
Exposure #8: ind_4uap
Exposure #9: ind_semflv
Exposure #10: ind_semultra
Contextual #1: idh_uf
Contextual #2: pib_uf
Contextual #3: gini_uf
Contextual #4: sisvan_uf
Contextual #5: esf_uf
Contextual #6: aps_uf
For example, can I use the following command:
I'm posting below this line a dataex of the data:
I'm analysing data for getting my master's degree and decided to work with multilevel analysis.
I have tranversal data from 165,007 children (lvl 1) grouped in 27 states (lvl 2). My outcome is their BMI (linear and cathegorical: 0 no obesity; 1 obesity) and height (linear and cathegorical: 0 no wasting; 1 wasting) and my exposure is their food consumption (10 yes/no questions on what they ate the day before). I also have contextual data from the 27 states (6 variables like state HDI and state access to health coverage percentage). My objective is to see if the correlation between what the child eats and their BMI and height varies between the states with different contextual status.
Can I, in the same command, use all 10 exposure variables + all 6 contextual variables for each of my outcomes?
Variables:
Outcome #1: z_altidade
Outcome #2: z_imcidade
Adjusting variable #1: idade
Adjusting variable #2: sexo
Exposure #1: ind_feijao
Exposure #2: ind_fruta
Exposure #3: ind_verdura
Exposure #4: ind_bebida
Exposure #5: ind_macarrao
Exposure #6: ind_doces
Exposure #7: ind_embutido
Exposure #8: ind_4uap
Exposure #9: ind_semflv
Exposure #10: ind_semultra
Contextual #1: idh_uf
Contextual #2: pib_uf
Contextual #3: gini_uf
Contextual #4: sisvan_uf
Contextual #5: esf_uf
Contextual #6: aps_uf
For example, can I use the following command:
Code:
mixed z_altidade age sex ind_feijao ind_fruta ind_verdura ind_bebida ind_macarrao ind_doces ind_embutido ind_4uap ind_semflv ind_semultra idh_uf pib_uf gini_uf sisvan_uf esf_uf aps_uf || uf: ind_feijao ind_fruta ind_verdura ind_bebida ind_macarrao ind_doces ind_embutido ind_4uap ind_semflv ind_semultra
I'm posting below this line a dataex of the data:
Code:
* Example generated by -dataex-. To install: ssc install dataex clear input long id byte sexo float(idade z_altidade z_imcidade ind_feijao ind_fruta ind_verdura ind_bebida ind_macarrao ind_doces ind_embutido ind_4uap ind_semflv ind_semultra idh_uf pib_uf gini_uf sisvan_uf esf_uf aps_uf) 780129 0 7.323751 -2.2035506 2.463492 1 1 1 1 1 1 1 1 0 0 .687 17667.8 .527 14.05 75.99 80.91 1308135 1 6.439425 .11371554 -.12088555 1 1 1 1 1 1 0 0 0 0 .737 26101.7 .566 5.61 61.17 70.4 3691340 0 5.40178 -.4433573 -.6637772 1 1 1 0 0 0 0 0 0 1 .718 19716.2 .557 11.6 75.84 81.03 10914863 1 9.790554 -1.34999 .28729343 1 1 1 1 0 0 0 0 0 0 .731 30794 .487 21.29 80.75 89.33 11653405 0 5.724846 .18190157 -.6872 1 0 1 1 0 1 1 0 0 0 .731 30794 .487 21.29 80.75 89.33 11694733 1 5.322382 -2.435411 2.385899 1 0 1 1 0 0 0 0 0 0 .731 30794 .487 21.29 80.75 89.33 11899065 1 6.209445 -2.593762 .5391276 1 1 1 1 1 1 1 1 0 0 .731 30794 .487 21.29 80.75 89.33 14752400 1 5.396304 -3.81397 1.8875575 1 1 0 1 0 1 1 0 0 0 .673 20702.3 .574 12.17 77.16 80.56 17682730 0 6.724162 .01479333 1.2854333 1 1 1 1 0 1 0 0 0 0 .749 40788.8 .477 18.28 64.6 75.67 18039163 1 6.360027 -.37742415 .07626039 0 0 1 0 1 0 0 0 0 0 .749 40788.8 .477 18.28 64.6 75.67 21520938 0 8.287475 1.5279056 1.4959183 1 1 1 1 1 1 0 0 0 0 .774 45118.4 .421 38.98 81.52 91.24 28082885 0 9.661876 1.278697 2.343362 1 1 1 1 1 1 1 1 0 0 .731 30794 .487 21.29 80.75 89.33 28593335 0 7.457906 2.6422744 3.038634 1 1 1 1 1 1 1 1 0 0 .725 40787.3 .454 13.81 69.86 76.3 31210988 0 6.195756 -.208791 1.17013 1 1 1 1 0 1 0 0 0 0 .731 30794 .487 21.29 80.75 89.33 33179300 1 9.812457 .24143606 -.56850153 1 0 1 1 0 0 1 0 0 0 .687 17667.8 .527 14.05 75.99 80.91 33320964 1 9.979466 -.05475925 .6198136 1 1 1 0 0 1 0 0 0 0 .718 19716.2 .557 11.6 75.84 81.03 33442931 0 9.941136 -.018308386 .3775965 1 1 1 1 1 1 1 1 0 0 .744 17912.2 .562 11.69 82.9 85.23 33449946 0 9.883641 1.3227162 1.680543 1 0 1 0 0 1 0 0 0 0 .744 17912.2 .562 11.69 82.9 85.23 33523179 0 9.837098 -.25170115 -1.492172 1 1 0 0 1 1 1 0 0 0 .774 29732.4 .459 18.43 68.08 74.75 33524086 1 9.960301 -.37001395 1.0945523 1 1 1 1 0 0 0 0 0 0 .774 29732.4 .459 18.43 68.08 74.75 33624378 1 9.83436 -1.253505 .8478222 1 1 1 0 0 0 0 0 0 1 .694 13757.9 .531 18.21 85.4 87.37 33629684 0 9.960301 -4.4110956 -.4543626 1 1 1 0 0 0 1 0 0 0 .731 30794 .487 21.29 80.75 89.33 33656418 0 9.982204 1.393659 -1.7909104 1 1 1 1 0 0 0 0 0 0 .731 30794 .487 21.29 80.75 89.33 33663706 1 9.990417 .1028681 .7471433 0 0 0 1 0 0 1 0 1 0 .731 30794 .487 21.29 80.75 89.33 33686173 0 9.919233 1.0078328 -.06165731 1 0 0 1 1 1 1 1 1 0 .731 30794 .487 21.29 80.75 89.33 33702313 0 9.886379 -.4091429 -.9671336 0 0 1 1 0 1 0 0 0 0 .731 30794 .487 21.29 80.75 89.33 33716011 0 9.957563 .2954621 -.9046826 1 1 0 1 1 1 1 1 0 0 .731 30794 .487 21.29 80.75 89.33 33721238 0 9.839836 -1.358993 -.29330796 1 1 1 1 1 1 1 1 0 0 .731 30794 .487 21.29 80.75 89.33 33881793 0 9.908282 -.6458494 -.3299139 1 0 0 0 0 0 0 0 1 1 .673 20702.3 .574 12.17 77.16 80.56 33883583 1 9.930184 -.4616807 .4848693 1 1 0 1 0 1 1 0 0 0 .673 20702.3 .574 12.17 77.16 80.56 33883712 0 9.971252 2.178085 -.7532623 1 1 1 1 1 1 1 1 0 0 .673 20702.3 .574 12.17 77.16 80.56 33932198 0 9.982204 .2954621 -.6237455 1 1 1 1 0 1 1 0 0 0 .673 20702.3 .574 12.17 77.16 80.56 33966336 1 9.826146 -1.9462875 -1.6642853 1 1 1 0 0 1 0 0 0 0 .673 20702.3 .574 12.17 77.16 80.56 33969509 0 9.87269 -.4889641 -1.0993032 1 1 1 0 0 1 1 0 0 0 .673 20702.3 .574 12.17 77.16 80.56 33970498 1 9.987679 -1.631033 -1.5085915 1 1 1 0 0 0 1 0 0 0 .673 20702.3 .574 12.17 77.16 80.56 33972211 0 9.878165 -.5665846 -2.962566 0 1 0 1 1 1 1 1 0 0 .673 20702.3 .574 12.17 77.16 80.56 34266727 0 9.754962 -2.3835015 .8650157 0 0 0 1 1 1 0 0 1 0 .746 42406.1 .482 12.5 58.98 74.29 34350730 0 9.932922 .13857687 2.366031 0 1 1 0 0 1 1 0 0 0 .783 51140.8 .526 9.46 39.47 59.98 34359523 0 9.93566 .7661179 -1.085676 1 0 0 1 0 1 0 0 1 0 .783 51140.8 .526 9.46 39.47 59.98 35697780 1 9.826146 -2.734424 -.26097938 1 1 0 1 1 1 0 0 0 0 .739 17722.4 .559 7.04 71.38 78.85 35712389 1 9.848049 1.514577 3.133769 0 1 0 0 1 0 1 0 0 0 .687 17667.8 .527 14.05 75.99 80.91 35717894 1 9.894592 .17177857 1.0009377 0 1 0 0 0 0 1 0 0 0 .687 17667.8 .527 14.05 75.99 80.91 35718909 0 9.867214 .06318234 .3771046 1 0 1 0 1 1 1 0 0 0 .687 17667.8 .527 14.05 75.99 80.91 35723179 0 9.987679 -.8027346 .51162016 1 1 0 0 0 0 0 0 0 1 .687 17667.8 .527 14.05 75.99 80.91 35723211 0 9.91102 -.329046 -1.0156125 1 1 0 0 0 1 0 0 0 0 .687 17667.8 .527 14.05 75.99 80.91 35723648 0 9.949349 -.4889641 -.8166595 0 1 0 1 0 0 0 0 0 0 .687 17667.8 .527 14.05 75.99 80.91 35723962 0 9.650924 -.6451161 -2.863168 1 1 0 1 1 1 1 1 0 0 .687 17667.8 .527 14.05 75.99 80.91 35724250 0 9.681041 -.329046 -2.132966 1 1 1 1 1 1 1 1 0 0 .687 17667.8 .527 14.05 75.99 80.91 35725050 0 9.864476 -2.141002 -1.3569282 1 1 0 1 1 0 0 0 0 0 .774 29732.4 .459 18.43 68.08 74.75 35725915 0 9.448323 .7661179 -1.085676 0 1 1 1 1 1 1 1 0 0 .687 17667.8 .527 14.05 75.99 80.91 35729286 0 9.670089 1.4963672 2.227248 1 1 1 1 1 0 0 0 0 0 .687 17667.8 .527 14.05 75.99 80.91 35744599 0 9.938398 -.3320789 -1.4765623 0 1 0 1 1 0 1 0 0 0 .687 17667.8 .527 14.05 75.99 80.91 35744651 0 9.806981 .9352344 -1.0384235 1 0 0 1 1 0 1 0 1 0 .687 17667.8 .527 14.05 75.99 80.91 35751299 0 9.946612 -.5665846 1.838676 1 1 1 1 1 1 1 1 0 0 .687 17667.8 .527 14.05 75.99 80.91 35751867 0 9.787817 .6929493 .9781756 1 1 0 1 1 1 1 1 0 0 .687 17667.8 .527 14.05 75.99 80.91 35756057 0 9.946612 -.17519364 1.7125967 1 0 0 0 1 1 1 0 1 0 .687 17667.8 .527 14.05 75.99 80.91 35758838 1 9.842573 .8052379 3.2977014 1 1 0 1 0 0 0 0 0 0 .737 26101.7 .566 5.61 61.17 70.4 35785999 1 9.79603 .5597213 .05441225 0 0 0 1 0 0 0 0 1 0 .737 26101.7 .566 5.61 61.17 70.4 35790712 1 9.905544 -2.0683928 -.4340308 1 1 1 1 1 0 1 0 0 0 .737 26101.7 .566 5.61 61.17 70.4 35822886 1 9.708419 -.6475776 .5029135 1 0 0 1 1 0 0 0 1 0 .718 19716.2 .557 11.6 75.84 81.03 35823751 0 9.768652 4.0959353 2.3818388 0 0 0 1 1 1 1 1 1 0 .718 19716.2 .557 11.6 75.84 81.03 35824767 0 9.607119 .14505918 1.0205896 1 1 1 1 1 1 0 0 0 0 .718 19716.2 .557 11.6 75.84 81.03 35826885 0 9.968514 2.0212 1.5210667 1 1 1 1 1 1 0 0 0 0 .718 19716.2 .557 11.6 75.84 81.03 35829193 1 9.946612 -.14495109 -2.1670523 1 0 0 1 1 1 0 0 1 0 .718 19716.2 .557 11.6 75.84 81.03 35830982 1 9.916495 -.4876856 .3689188 1 0 0 1 1 1 1 1 1 0 .718 19716.2 .557 11.6 75.84 81.03 35835015 1 9.806981 .5597213 -1.033871 1 1 1 1 0 1 0 0 0 0 .718 19716.2 .557 11.6 75.84 81.03 35855729 0 9.626284 .15071064 2.294546 1 1 1 0 1 0 0 0 0 0 .718 19716.2 .557 11.6 75.84 81.03 35858661 0 9.952087 -.018308386 -.426081 1 1 0 0 0 0 0 0 0 1 .718 19716.2 .557 11.6 75.84 81.03 35860101 0 9.650924 -.329046 -.006827412 1 0 1 0 0 0 0 0 0 1 .718 19716.2 .557 11.6 75.84 81.03 35861720 0 9.711157 -.8031511 1.657617 1 1 1 0 0 1 0 0 0 0 .718 19716.2 .557 11.6 75.84 81.03 35864364 0 9.861738 .53550756 2.3717341 1 1 1 0 1 0 0 0 0 0 .718 19716.2 .557 11.6 75.84 81.03 35864974 1 9.976728 -.37001395 .03137337 1 1 1 1 1 1 1 1 0 0 .718 19716.2 .557 11.6 75.84 81.03 35865268 1 9.631759 1.0486323 2.939897 1 0 0 1 1 1 1 1 1 0 .718 19716.2 .557 11.6 75.84 81.03 35883387 0 9.615332 .54458046 -.6149532 1 1 1 1 1 1 0 0 0 0 .718 19716.2 .557 11.6 75.84 81.03 35885811 1 9.697468 -.07684916 .7844372 1 1 0 0 0 1 1 0 0 0 .783 51140.8 .526 9.46 39.47 59.98 35894946 0 9.500342 .073346905 .6820206 1 0 0 1 0 0 1 0 1 0 .718 19716.2 .557 11.6 75.84 81.03 35896062 1 9.746749 .17177857 2.223265 0 0 0 0 0 0 0 0 1 1 .718 19716.2 .557 11.6 75.84 81.03 35901777 1 9.97399 -.5276413 1.7891778 1 0 0 1 0 0 0 0 1 0 .718 19716.2 .557 11.6 75.84 81.03 35904894 0 9.724846 .54458046 -.6149532 1 0 0 0 0 0 0 0 1 1 .718 19716.2 .557 11.6 75.84 81.03 35909116 0 9.689254 -.56583744 -.4097461 1 0 0 1 0 1 0 0 1 0 .718 19716.2 .557 11.6 75.84 81.03 35909460 0 9.645449 .53550756 2.3717341 1 1 1 1 1 1 1 1 0 0 .718 19716.2 .557 11.6 75.84 81.03 35910715 0 9.984941 -.5665846 2.1011052 1 1 1 0 0 0 0 0 0 1 .718 19716.2 .557 11.6 75.84 81.03 35911430 1 9.91102 -1.8869642 -2.054764 1 0 1 1 0 1 1 0 0 0 .718 19716.2 .557 11.6 75.84 81.03 35912434 0 9.97399 .7661179 -.9575977 1 1 1 0 0 1 0 0 0 0 .718 19716.2 .557 11.6 75.84 81.03 35920380 0 9.626284 .7661179 .029599974 1 1 1 0 0 1 0 0 0 0 .731 30794 .487 21.29 80.75 89.33 35927256 0 9.278576 .4831652 -1.6933094 1 1 1 0 0 0 0 0 0 1 .718 19716.2 .557 11.6 75.84 81.03 35927831 1 9.97399 2.1500666 1.0568627 1 0 0 1 0 1 1 0 1 0 .718 19716.2 .557 11.6 75.84 81.03 35928430 0 9.798768 1.5673746 2.430302 0 1 0 1 1 1 1 1 0 0 .718 19716.2 .557 11.6 75.84 81.03 35939544 0 9.585216 -1.8261185 -2.3760092 1 1 0 1 0 1 1 0 0 0 .718 19716.2 .557 11.6 75.84 81.03 35939853 1 9.771389 .7188639 -1.5312355 1 1 1 1 0 1 0 0 0 0 .718 19716.2 .557 11.6 75.84 81.03 35942649 0 9.774127 .3030942 -.9182635 1 1 1 1 1 1 0 0 0 0 .718 19716.2 .557 11.6 75.84 81.03 35943145 1 9.976728 1.0486323 -1.7483557 1 1 0 1 1 1 1 1 0 0 .718 19716.2 .557 11.6 75.84 81.03 35943216 1 9.393566 -.7032761 .8461497 0 1 1 1 1 1 1 1 0 0 .673 20702.3 .574 12.17 77.16 80.56 35943219 1 9.774127 2.31029 -.3357079 1 1 1 1 1 1 0 0 0 0 .718 19716.2 .557 11.6 75.84 81.03 35943506 1 9.817933 -1.6682752 -2.437814 1 1 1 1 1 0 1 0 0 0 .718 19716.2 .557 11.6 75.84 81.03 35943520 0 9.59343 1.7426666 -2.7563624 1 1 1 1 1 1 1 1 0 0 .718 19716.2 .557 11.6 75.84 81.03 35943836 1 9.620808 .8649848 2.0387847 1 1 1 1 1 1 1 1 0 0 .718 19716.2 .557 11.6 75.84 81.03 35943888 1 9.861738 1.597062 -.7046593 1 1 1 1 1 1 1 1 0 0 .718 19716.2 .557 11.6 75.84 81.03 35951485 0 9.648186 -.16768055 -1.0796583 1 0 1 1 0 1 1 0 0 0 .718 19716.2 .557 11.6 75.84 81.03 35951663 0 9.765914 -.329046 1.1620181 1 0 0 1 1 0 0 0 1 0 .718 19716.2 .557 11.6 75.84 81.03 end label values sexo sexo label def sexo 0 "feminino", modify label def sexo 1 "masculino", modify label values ind_feijao naosim label values ind_fruta naosim label values ind_verdura naosim label values ind_bebida naosim label values ind_macarrao naosim label values ind_doces naosim label values ind_embutido naosim label values ind_4uap naosim label values ind_semflv naosim label values ind_semultra naosim label def naosim 0 "nao", modify label def naosim 1 "sim", modify
Comment