Hi all
I am working on my master thesis tackling the impact of firm-level adoption of mobile money (a binary variable) on its energy intensity (a variable that ranges from 0 to 1). Actually I am a little confused about whether to define my data as panel or pooled cross section. I combined the panel dataset of Kenya , Tanzania and Uganda from the World-Bank enterprise survey, but the year of waves of Kenya differ than those of Tanzania and Uganda, they are only common in year 2013.
So, I have couple of questions regarding my model:
- should I deal with my data as panel or pooled cross section?
- if it will be pooled cross-section, what is the appropriate model for the relationship, Pooled OLS?
- if it is Polled OLS, what is the code? should I define my dataset first as panel using the xttest command before running the model.
- Another issue, since the survey limits me within certain range of variables, my model includes lots of binary variables but two continuous ones, Will this affect my coefficients, if it will how can I account for it?
here is a sample of the data
clear
input str8 country float(year unique_id_01) byte MM float EE byte a0 float(privatedomestic_ownership labor_productivity) byte human_capital
"Kenya" 2018 4521 1 .06129384 2 0 . 100
"Kenya" 2013 5001 1 . 1 40 6875000 90
"Kenya" 2018 4630 1 . 3 100 . 100
"Tanzania" 2006 2028 . .02367347 . 50 3363636 .
"Kenya" 2018 4750 0 . 3 100 . 100
"Kenya" 2013 4750 0 . 3 100 . 80
"Kenya" 2013 5161 0 .026 1 100 9240741 90
"Kenya" 2018 4735 1 . 1 100 725000 5
"Tanzania" 2013 2957 0 .00013333333 1 100 6.00e+08 100
"Kenya" 2007 4275 . .017828345 1 100 711349.7 .
"Kenya" 2013 5181 1 . 1 100 5875001 100
"Kenya" 2013 5139 1 . 1 100 9000 80
"Kenya" 2013 4898 0 . 3 . . 60
"Kenya" 2018 5654 0 .010005834 3 100 . 90
"uganda" 2006 247 . .015748031 . 10 141075792 .
"Kenya" 2007 4361 . . 1 100 422855.9 .
"uganda" 2013 807 0 .021352 1 100 6.50e+07 16
"uganda" 2013 692 1 . 2 100 . .
"uganda" 2006 362 . . . 0 20923076 .
"Kenya" 2018 5632 1 .05307692 3 100 . 4
"Kenya" 2013 4828 0 . 1 100 . 100
"Kenya" 2013 4867 0 . 1 100 8.00e+07 100
"Kenya" 2018 5872 1 . 1 0 . 100
"Kenya" 2013 5177 1 . 1 100 10633218 65
"Kenya" 2007 4296 . . 1 100 3230770 .
"Kenya" 2018 5084 0 . 1 100 3190000 80
"Kenya" 2007 4028 . . 1 100 117647.06 .
"Kenya" 2007 4555 . .023700954 3 100 . .
"Tanzania" 2006 2381 . . . 100 . .
"Kenya" 2013 4555 0 .009 3 100 . 9
"Kenya" 2018 4555 1 .009309065 3 100 . 100
"Kenya" 2018 4829 0 . 1 100 33333.332 .
"Tanzania" 2006 2001 . . . 11 169538448 .
"Kenya" 2018 5455 1 . 1 72 . 100
"Kenya" 2013 5006 1 . 2 100 . 0
"Kenya" 2018 5548 0 .0012018988 1 100 . 100
"Kenya" 2007 4343 . . 1 0 235000 .
"Kenya" 2013 5178 0 . 1 100 2130000 90
"Kenya" 2018 4345 0 . 1 0 5960000 100
"Kenya" 2013 5084 0 . 1 100 1818182 15
"Kenya" 2007 4234 . . 1 100 400000 .
"Kenya" 2007 4047 . .05703125 1 30 4095192 .
"Kenya" 2013 4047 0 .1205986 1 35 . 100
"Kenya" 2018 5862 0 . 1 88 404500 .
"Kenya" 2007 4202 . . 1 100 800000 .
"Kenya" 2018 4002 1 .0675 1 100 806451.6 60
"Kenya" 2007 4002 . .0345 1 0 352941.2 .
"Kenya" 2013 5185 0 . 1 0 2666667 100
"Kenya" 2013 4347 0 . 1 100 . 80
"Kenya" 2013 4002 0 . 1 30 1333333.4 .
"Kenya" 2007 4344 . . 1 0 4000000 .
"Kenya" 2007 4578 . . 3 100 . .
"Kenya" 2013 4735 1 . 1 100 290909.1 95
"uganda" 2006 246 . .05316667 . 100 15384615 .
"uganda" 2006 310 . . . 0 6666667 .
"Kenya" 2018 5764 1 .01875 3 100 . 100
"Kenya" 2007 4294 . . 1 0 7236842 .
"Kenya" 2013 5132 0 . 1 100 . 85
"Kenya" 2018 5600 1 .005272727 1 38 929166.7 50
"Tanzania" 2006 2104 . .03075 . 100 41666668 .
"Kenya" 2018 5179 1 .086 2 100 . 100
"Kenya" 2013 5095 0 . 1 100 1666666.6 100
"Kenya" 2007 4315 . . 1 100 1053333.4 .
"Kenya" 2013 4802 0 . 2 100 . 100
"Kenya" 2007 4114 . . 1 0 2142857.3 .
"Kenya" 2018 5776 1 .032 3 100 . 100
"uganda" 2013 252 1 . 1 100 . 80
"Kenya" 2013 5180 0 .013333334 1 100 2350000 90
"Kenya" 2018 5988 1 . 1 100 337500 100
"Kenya" 2018 5816 1 . 3 20 . 100
"Kenya" 2018 5556 0 .066 1 100 4542857 100
"uganda" 2006 2 . .002708333 . 75 26666666 .
"Kenya" 2013 4934 1 . 1 51 63196204 100
"Kenya" 2018 5829 1 . 3 0 . .
"Kenya" 2013 4992 1 . 1 100 . 12
"Kenya" 2018 5685 1 .1 3 100 . 100
"Kenya" 2007 4009 . . 1 100 796460.2 .
"Kenya" 2013 4702 1 . 1 0 3332969 25
"Kenya" 2018 5994 1 . 3 100 . 100
"Kenya" 2013 4978 0 . 3 35 . 100
"Kenya" 2013 5278 0 . 1 0 . 80
"Kenya" 2007 4014 . .08333334 1 100 1028846.1 .
"Kenya" 2007 4210 . .21454546 1 100 1354545.5 .
"Kenya" 2013 4985 1 . 3 100 . 100
"Kenya" 2018 4210 1 .13047619 2 100 . 100
"Kenya" 2013 5131 0 . 1 51 . 60
"Kenya" 2007 4213 . . 1 0 2357142.8 .
"Kenya" 2013 4294 0 .1 1 100 . 100
"Kenya" 2007 4521 . .01875 2 100 625000 .
"uganda" 2013 867 0 .032028 1 100 59750000 16
"Kenya" 2013 4300 1 .17 1 3 27490000 100
"uganda" 2013 591 0 . 3 100 . 40
"Kenya" 2007 4048 . . 1 75 816666.7 .
"Kenya" 2013 4704 0 . 1 100 4400000 90
"Kenya" 2013 4752 1 . 1 0 623333.3 4
"uganda" 2013 640 0 . 1 100 . 17
"Kenya" 2007 4091 . . 1 100 3866667 .
"uganda" 2013 281 0 . 1 . . 100
"Kenya" 2013 4075 0 . 1 100 518918.9 80
"Kenya" 2007 4128 . . 1 40 1891892 .
end
I am working on my master thesis tackling the impact of firm-level adoption of mobile money (a binary variable) on its energy intensity (a variable that ranges from 0 to 1). Actually I am a little confused about whether to define my data as panel or pooled cross section. I combined the panel dataset of Kenya , Tanzania and Uganda from the World-Bank enterprise survey, but the year of waves of Kenya differ than those of Tanzania and Uganda, they are only common in year 2013.
So, I have couple of questions regarding my model:
- should I deal with my data as panel or pooled cross section?
- if it will be pooled cross-section, what is the appropriate model for the relationship, Pooled OLS?
- if it is Polled OLS, what is the code? should I define my dataset first as panel using the xttest command before running the model.
- Another issue, since the survey limits me within certain range of variables, my model includes lots of binary variables but two continuous ones, Will this affect my coefficients, if it will how can I account for it?
here is a sample of the data
clear
input str8 country float(year unique_id_01) byte MM float EE byte a0 float(privatedomestic_ownership labor_productivity) byte human_capital
"Kenya" 2018 4521 1 .06129384 2 0 . 100
"Kenya" 2013 5001 1 . 1 40 6875000 90
"Kenya" 2018 4630 1 . 3 100 . 100
"Tanzania" 2006 2028 . .02367347 . 50 3363636 .
"Kenya" 2018 4750 0 . 3 100 . 100
"Kenya" 2013 4750 0 . 3 100 . 80
"Kenya" 2013 5161 0 .026 1 100 9240741 90
"Kenya" 2018 4735 1 . 1 100 725000 5
"Tanzania" 2013 2957 0 .00013333333 1 100 6.00e+08 100
"Kenya" 2007 4275 . .017828345 1 100 711349.7 .
"Kenya" 2013 5181 1 . 1 100 5875001 100
"Kenya" 2013 5139 1 . 1 100 9000 80
"Kenya" 2013 4898 0 . 3 . . 60
"Kenya" 2018 5654 0 .010005834 3 100 . 90
"uganda" 2006 247 . .015748031 . 10 141075792 .
"Kenya" 2007 4361 . . 1 100 422855.9 .
"uganda" 2013 807 0 .021352 1 100 6.50e+07 16
"uganda" 2013 692 1 . 2 100 . .
"uganda" 2006 362 . . . 0 20923076 .
"Kenya" 2018 5632 1 .05307692 3 100 . 4
"Kenya" 2013 4828 0 . 1 100 . 100
"Kenya" 2013 4867 0 . 1 100 8.00e+07 100
"Kenya" 2018 5872 1 . 1 0 . 100
"Kenya" 2013 5177 1 . 1 100 10633218 65
"Kenya" 2007 4296 . . 1 100 3230770 .
"Kenya" 2018 5084 0 . 1 100 3190000 80
"Kenya" 2007 4028 . . 1 100 117647.06 .
"Kenya" 2007 4555 . .023700954 3 100 . .
"Tanzania" 2006 2381 . . . 100 . .
"Kenya" 2013 4555 0 .009 3 100 . 9
"Kenya" 2018 4555 1 .009309065 3 100 . 100
"Kenya" 2018 4829 0 . 1 100 33333.332 .
"Tanzania" 2006 2001 . . . 11 169538448 .
"Kenya" 2018 5455 1 . 1 72 . 100
"Kenya" 2013 5006 1 . 2 100 . 0
"Kenya" 2018 5548 0 .0012018988 1 100 . 100
"Kenya" 2007 4343 . . 1 0 235000 .
"Kenya" 2013 5178 0 . 1 100 2130000 90
"Kenya" 2018 4345 0 . 1 0 5960000 100
"Kenya" 2013 5084 0 . 1 100 1818182 15
"Kenya" 2007 4234 . . 1 100 400000 .
"Kenya" 2007 4047 . .05703125 1 30 4095192 .
"Kenya" 2013 4047 0 .1205986 1 35 . 100
"Kenya" 2018 5862 0 . 1 88 404500 .
"Kenya" 2007 4202 . . 1 100 800000 .
"Kenya" 2018 4002 1 .0675 1 100 806451.6 60
"Kenya" 2007 4002 . .0345 1 0 352941.2 .
"Kenya" 2013 5185 0 . 1 0 2666667 100
"Kenya" 2013 4347 0 . 1 100 . 80
"Kenya" 2013 4002 0 . 1 30 1333333.4 .
"Kenya" 2007 4344 . . 1 0 4000000 .
"Kenya" 2007 4578 . . 3 100 . .
"Kenya" 2013 4735 1 . 1 100 290909.1 95
"uganda" 2006 246 . .05316667 . 100 15384615 .
"uganda" 2006 310 . . . 0 6666667 .
"Kenya" 2018 5764 1 .01875 3 100 . 100
"Kenya" 2007 4294 . . 1 0 7236842 .
"Kenya" 2013 5132 0 . 1 100 . 85
"Kenya" 2018 5600 1 .005272727 1 38 929166.7 50
"Tanzania" 2006 2104 . .03075 . 100 41666668 .
"Kenya" 2018 5179 1 .086 2 100 . 100
"Kenya" 2013 5095 0 . 1 100 1666666.6 100
"Kenya" 2007 4315 . . 1 100 1053333.4 .
"Kenya" 2013 4802 0 . 2 100 . 100
"Kenya" 2007 4114 . . 1 0 2142857.3 .
"Kenya" 2018 5776 1 .032 3 100 . 100
"uganda" 2013 252 1 . 1 100 . 80
"Kenya" 2013 5180 0 .013333334 1 100 2350000 90
"Kenya" 2018 5988 1 . 1 100 337500 100
"Kenya" 2018 5816 1 . 3 20 . 100
"Kenya" 2018 5556 0 .066 1 100 4542857 100
"uganda" 2006 2 . .002708333 . 75 26666666 .
"Kenya" 2013 4934 1 . 1 51 63196204 100
"Kenya" 2018 5829 1 . 3 0 . .
"Kenya" 2013 4992 1 . 1 100 . 12
"Kenya" 2018 5685 1 .1 3 100 . 100
"Kenya" 2007 4009 . . 1 100 796460.2 .
"Kenya" 2013 4702 1 . 1 0 3332969 25
"Kenya" 2018 5994 1 . 3 100 . 100
"Kenya" 2013 4978 0 . 3 35 . 100
"Kenya" 2013 5278 0 . 1 0 . 80
"Kenya" 2007 4014 . .08333334 1 100 1028846.1 .
"Kenya" 2007 4210 . .21454546 1 100 1354545.5 .
"Kenya" 2013 4985 1 . 3 100 . 100
"Kenya" 2018 4210 1 .13047619 2 100 . 100
"Kenya" 2013 5131 0 . 1 51 . 60
"Kenya" 2007 4213 . . 1 0 2357142.8 .
"Kenya" 2013 4294 0 .1 1 100 . 100
"Kenya" 2007 4521 . .01875 2 100 625000 .
"uganda" 2013 867 0 .032028 1 100 59750000 16
"Kenya" 2013 4300 1 .17 1 3 27490000 100
"uganda" 2013 591 0 . 3 100 . 40
"Kenya" 2007 4048 . . 1 75 816666.7 .
"Kenya" 2013 4704 0 . 1 100 4400000 90
"Kenya" 2013 4752 1 . 1 0 623333.3 4
"uganda" 2013 640 0 . 1 100 . 17
"Kenya" 2007 4091 . . 1 100 3866667 .
"uganda" 2013 281 0 . 1 . . 100
"Kenya" 2013 4075 0 . 1 100 518918.9 80
"Kenya" 2007 4128 . . 1 40 1891892 .
end
Comment