Hello everybody
What is exactly the difference between those two commands?
Thank you in advance
What is exactly the difference between those two commands?
Thank you in advance
xtset firmcode Year xtreg dep_var indep_vars covariates i.Year, fe
. . use "https://www.stata-press.com/data/r17/nlswork.dta" (National Longitudinal Survey of Young Women, 14-24 years old in 1968) . regress ln_wage age i.idcode i.year if idcode<=3 Source | SS df MS Number of obs = 39 -------------+---------------------------------- F(17, 21) = 2.68 Model | 3.54194923 17 .208349955 Prob > F = 0.0171 Residual | 1.63378973 21 .077799511 R-squared = 0.6843 -------------+---------------------------------- Adj R-squared = 0.4288 Total | 5.17573896 38 .136203657 Root MSE = .27893 ------------------------------------------------------------------------------ ln_wage | Coefficient Std. err. t P>|t| [95% conf. interval] -------------+---------------------------------------------------------------- age | .3010572 .3561559 0.85 0.407 -.4396095 1.041724 | idcode | 2 | -.3898423 .11632 -3.35 0.003 -.631743 -.1479415 3 | -2.247118 2.111457 -1.06 0.299 -6.638133 2.143897 | year | 69 | -.0920902 .5314565 -0.17 0.864 -1.197315 1.013134 70 | -.8648493 .779214 -1.11 0.280 -2.485314 .7556149 71 | -1.248506 1.09967 -1.14 0.269 -3.535396 1.038383 72 | -1.39387 1.443494 -0.97 0.345 -4.395779 1.60804 73 | -1.520276 1.79214 -0.85 0.406 -5.247236 2.206684 75 | -2.049717 2.495803 -0.82 0.421 -7.240024 3.14059 77 | -2.657565 3.203292 -0.83 0.416 -9.319175 4.004045 78 | -2.751196 3.557758 -0.77 0.448 -10.14996 4.647567 80 | -3.324016 4.267534 -0.78 0.445 -12.19884 5.550808 82 | -4.027975 4.983977 -0.81 0.428 -14.39272 6.336774 83 | -4.207353 5.333467 -0.79 0.439 -15.2989 6.884199 85 | -4.730657 6.044586 -0.78 0.443 -17.30106 7.839747 87 | -5.407995 6.755956 -0.80 0.432 -19.45777 8.641785 88 | -5.901929 7.348904 -0.80 0.431 -21.18481 9.380954 | _cons | -2.882579 5.734884 -0.50 0.620 -14.80892 9.043766 ------------------------------------------------------------------------------ . xtreg ln_wage age i.year if idcode<=3, fe Fixed-effects (within) regression Number of obs = 39 Group variable: idcode Number of groups = 3 R-squared: Obs per group: Within = 0.5596 min = 12 Between = 0.4744 avg = 13.0 Overall = 0.0413 max = 15 F(15,21) = 1.78 corr(u_i, Xb) = -0.9573 Prob > F = 0.1102 ------------------------------------------------------------------------------ ln_wage | Coefficient Std. err. t P>|t| [95% conf. interval] -------------+---------------------------------------------------------------- age | .3010572 .3561559 0.85 0.407 -.4396095 1.041724 | year | 69 | -.0920902 .5314565 -0.17 0.864 -1.197315 1.013134 70 | -.8648493 .779214 -1.11 0.280 -2.485314 .7556149 71 | -1.248506 1.09967 -1.14 0.269 -3.535396 1.038383 72 | -1.39387 1.443494 -0.97 0.345 -4.395779 1.60804 73 | -1.520276 1.79214 -0.85 0.406 -5.247236 2.206684 75 | -2.049717 2.495803 -0.82 0.421 -7.240024 3.14059 77 | -2.657565 3.203292 -0.83 0.416 -9.319175 4.004045 78 | -2.751196 3.557758 -0.77 0.448 -10.14996 4.647567 80 | -3.324016 4.267534 -0.78 0.445 -12.19884 5.550808 82 | -4.027975 4.983977 -0.81 0.428 -14.39272 6.336774 83 | -4.207353 5.333467 -0.79 0.439 -15.2989 6.884199 85 | -4.730657 6.044586 -0.78 0.443 -17.30106 7.839747 87 | -5.407995 6.755956 -0.80 0.432 -19.45777 8.641785 88 | -5.901929 7.348904 -0.80 0.431 -21.18481 9.380954 | _cons | -3.866807 6.544144 -0.59 0.561 -17.4761 9.742485 -------------+---------------------------------------------------------------- sigma_u | 1.2007631 sigma_e | .27892564 rho | .9488037 (fraction of variance due to u_i) ------------------------------------------------------------------------------ F test that all u_i=0: F(2, 21) = 6.09 Prob > F = 0.0082 . .
Comment