Dear friends,
I have a panel dataset which I am running reghdfe on it (for analyzing an event which happened in 2009). My base year is 2009. There are some treated counties and some control counties. The years before 2009 are before treatment period, and the years after are post treatment. I am analyzing the effect of this event on population share of different races in treated counties (share_white, share_black, share_hispanic, share_asian). However, surprisingly, the standard deviations gets consistently larger as I move away from 2009. I have double checked my dataset, it seems ok. Since this problem happens for the share of all races, I assume somewhere in my code I am making a mistake. Could you please help me?
Stata 16
This is my code:

This is 100 observations of my data:
columns: county_fips year treated_counties unemployment_rate lntot_pop share_white coef sd
I have a panel dataset which I am running reghdfe on it (for analyzing an event which happened in 2009). My base year is 2009. There are some treated counties and some control counties. The years before 2009 are before treatment period, and the years after are post treatment. I am analyzing the effect of this event on population share of different races in treated counties (share_white, share_black, share_hispanic, share_asian). However, surprisingly, the standard deviations gets consistently larger as I move away from 2009. I have double checked my dataset, it seems ok. Since this problem happens for the share of all races, I assume somewhere in my code I am making a mistake. Could you please help me?
Stata 16
This is my code:
Code:
u "C:/Users/fatem/Desktop/test.dta", clear drop if missing(treated_counties) g coef = . g sd = . summ ib2009.year reghdfe share_white c.treated_counties##ib2009.year unemloyment_rate /// lntot_pop, ab(county_fips year) vce(cl county_fips) sum year if e(sample), de foreach yr of numlist `r(min)'/`r(max)' { summ share_white if year==`yr' replace coef = _b[c.treated_counties#`yr'.year] if year == `yr' replace sd = _se[c.treated_counties#`yr'.year] if year == `yr' } collapse (mean) coef sd, by(year) g up90 = coef + 1.67*sd g down90 = coef - 1.67*sd g up95 = coef + 1.95*sd g down95 = coef - 1.95*sd gr tw (rbar up95 down95 year, barwidth(0.25) fi(25) lw(none)) /* */ (rbar up90 down90 year, barwidth(0.25) fi(75) lw(none)) /* */ (connected coef year, ms(O) mc(gs6) yline(0, lp(solid)) yline(0, lp(solid)) xline(2009, lc(red) lp(solid))), /* */ legend(order(3 2 1) label(1 "95% CI") label(2 "90% CI") label(3 "Point Estimates") ring(0) position(1)) /* */ xlabel(2004(2)2016) /* */ title("OLS estimate of Share of White population", size(small)) xtitle("") /* */ note("County, year fe are used.") graph export "C:/Users/fatem/Desktop/3whiteshare_ols_eventstudy_borderingcounties.png", replace
This is 100 observations of my data:
columns: county_fips year treated_counties unemployment_rate lntot_pop share_white coef sd
Code:
* Example generated by -dataex-. To install: ssc install dataex clear input float county_fips int year byte treated_counties float(unemloyment_rate lntot_pop share_white coef sd) 1005 2004 0 .07096532 10.250157 .4902252 -.00017331526 .001538591 1005 2005 0 .05740913 10.240924 .4862811 -.0003519282 .0012224042 1005 2006 0 .05628676 10.234983 .4811744 -.0006008844 .000909168 1005 2007 0 .06417061 10.231243 .4767806 -.0004757014 .0006120544 1005 2008 0 .09100737 10.23308 .4738205 -.00032280505 .0003547888 1005 2009 0 .13163717 10.227634 .4721047 0 0 1005 2010 0 .12144046 10.215557 .4704849 -.0003929117 .00027636442 1005 2011 0 .1144976 10.216252 .471182 .00010996138 .000509118 1005 2012 0 .11773489 10.209942 .4704107 -.00003285825 .0006363138 1005 2013 0 .10378188 10.20159 .4674534 .0004268815 .0007247712 1005 2014 0 .10486511 10.194963 .4685072 .0008051821 .0008610787 1005 2015 0 .08928987 10.177324 .46657795 .0009634383 .001008456 1005 2016 0 .08351332 10.159214 .465851 .0006382616 .0011573451 1017 2004 0 .06914605 10.476245 .5950145 -.00017331526 .001538591 1017 2005 0 .05696591 10.471044 .5924771 -.0003519282 .0012224042 1017 2006 0 .05786435 10.46153 .5904135 -.0006008844 .000909168 1017 2007 0 .06624992 10.458722 .587999 -.0004757014 .0006120544 1017 2008 0 .14887828 10.45054 .58660996 -.00032280505 .0003547888 1017 2009 0 .1811279 10.445347 .5849523 0 0 1017 2010 0 .14612462 10.4372 .58627766 -.0003929117 .00027636442 1017 2011 0 .11847217 10.434587 .5868121 .00010996138 .000509118 1017 2012 0 .10092349 10.4367 .58076155 -.00003285825 .0006363138 1017 2013 0 .08091463 10.437785 .5759707 .0004268815 .0007247712 1017 2014 0 .06660578 10.433057 .5691026 .0008051821 .0008610787 1017 2015 0 .06078051 10.43385 .56597334 .0009634383 .001008456 1017 2016 0 .0547853 10.426498 .5636892 .0006382616 .0011573451 1019 2004 0 .04729954 10.1221 .9312493 -.00017331526 .001538591 1019 2005 0 .04320679 10.12787 .9316048 -.0003519282 .0012224042 1019 2006 0 .04189144 10.1451 .9317129 -.0006008844 .000909168 1019 2007 0 .04262404 10.14851 .9308887 -.0004757014 .0006120544 1019 2008 0 .05933828 10.151752 .9305664 -.00032280505 .0003547888 1019 2009 0 .10712761 10.16022 .9299141 0 0 1019 2010 0 .10457003 10.16462 .9307609 -.0003929117 .00027636442 1019 2011 0 .09622592 10.165583 .9292117 .00010996138 .000509118 1019 2012 0 .0822841 10.16435 .9279304 -.00003285825 .0006363138 1019 2013 0 .06715239 10.166698 .9286373 .0004268815 .0007247712 1019 2014 0 .05777154 10.161998 .9293823 .0008051821 .0008610787 1019 2015 0 .05488681 10.155763 .9283966 .0009634383 .001008456 1019 2016 0 .05070723 10.156927 .9284024 .0006382616 .0011573451 1029 2004 0 .05217521 9.570739 .9394658 -.00017331526 .001538591 1029 2005 0 .03914484 9.572759 .938892 -.0003519282 .0012224042 1029 2006 0 .03475775 9.584521 .9365112 -.0006008844 .000909168 1029 2007 0 .03724796 9.602315 .9376309 -.0004757014 .0006120544 1029 2008 0 .05246302 9.60737 .9385505 -.00032280505 .0003547888 1029 2009 0 .09324511 9.610324 .9365867 0 0 1029 2010 0 .09842585 9.616072 .9370834 -.0003929117 .00027636442 1029 2011 0 .0963125 9.610994 .9351554 .00010996138 .000509118 1029 2012 0 .08404656 9.608378 .9355229 -.00003285825 .0006363138 1029 2013 0 .07776824 9.614071 .9345532 .0004268815 .0007247712 1029 2014 0 .065654844 9.617737 .9329962 .0008051821 .0008610787 1029 2015 0 .06055791 9.610659 .9333244 .0009634383 .001008456 1029 2016 0 .0599512 9.607168 .9334947 .0006382616 .0011573451 1049 2004 0 .05704311 11.11632 .877862 -.00017331526 .001538591 1049 2005 0 .05051997 11.12423 .868956 -.0003519282 .0012224042 1049 2006 0 .04145784 11.134516 .859362 -.0006008844 .000909168 1049 2007 0 .04352722 11.148362 .852671 -.0004757014 .0006120544 1049 2008 0 .06021702 11.159502 .843168 -.00032280505 .0003547888 1049 2009 0 .13113375 11.168518 .8352337 0 0 1049 2010 0 .12400544 11.172307 .8296431 -.0003929117 .00027636442 1049 2011 0 .1170663 11.175142 .8260181 .00010996138 .000509118 1049 2012 0 .09266315 11.16921 .8269711 -.00003285825 .0006363138 1049 2013 0 .0773155 11.168757 .8260606 .0004268815 .0007247712 1049 2014 0 .06838638 11.169914 .8261065 .0008051821 .0008610787 1049 2015 0 .06101045 11.17135 .8259199 .0009634383 .001008456 1049 2016 0 .06083598 11.172068 .8234575 .0006382616 .0011573451 1067 2004 0 .05533492 9.722685 .6595974 -.00017331526 .001538591 1067 2005 0 .04282454 9.726273 .6628462 -.0003519282 .0012224042 1067 2006 0 .03992547 9.7382 .6666667 -.0006008844 .000909168 1067 2007 0 .05490144 9.747301 .6691022 -.0004757014 .0006120544 1067 2008 0 .07977787 9.748528 .6724269 -.00032280505 .0003547888 1067 2009 0 .10254607 9.755161 .6791742 0 0 1067 2010 0 .10763936 9.758057 .6832244 -.0003929117 .00027636442 1067 2011 0 .09671207 9.762903 .6853312 .00010996138 .000509118 1067 2012 0 .0849794 9.74987 .6855177 -.00003285825 .0006363138 1067 2013 0 .0781295 9.74847 .688405 .0004268815 .0007247712 1067 2014 0 .07469063 9.745312 .6933935 .0008051821 .0008610787 1067 2015 0 .06848702 9.746658 .6933965 .0009634383 .001008456 1067 2016 0 .06525653 9.744609 .6955808 .0006382616 .0011573451 1069 2004 0 .04621209 11.435968 .7153673 -.00017331526 .001538591 1069 2005 0 .0379923 11.450018 .7108719 -.0003519282 .0012224042 1069 2006 0 .033966463 11.470498 .7092002 -.0006008844 .000909168 1069 2007 0 .03399044 11.489933 .7059666 -.0004757014 .0006120544 1069 2008 0 .05061683 11.504722 .7010072 -.00032280505 .0003547888 1069 2009 0 .08507667 11.517913 .6971841 0 0 1069 2010 0 .09043755 11.530766 .6951375 -.0003929117 .00027636442 1069 2011 0 .08605804 11.537705 .6926416 .00010996138 .000509118 1069 2012 0 .0775488 11.546457 .6886665 -.00003285825 .0006363138 1069 2013 0 .07020079 11.54917 .687292 .0004268815 .0007247712 1069 2014 0 .06748629 11.55422 .6833788 .0008051821 .0008610787 1069 2015 0 .06266877 11.555276 .6829362 .0009634383 .001008456 1069 2016 0 .05802874 11.555553 .6798908 .0006382616 .0011573451 1071 2004 0 .06742071 10.887904 .9234189 -.00017331526 .001538591 1071 2005 0 .04995319 10.884292 .9228043 -.0003519282 .0012224042 1071 2006 0 .04443952 10.88712 .921433 -.0006008844 .000909168 1071 2007 0 .04611579 10.88431 .9206495 -.0004757014 .0006120544 1071 2008 0 .063760884 10.887904 .9182999 -.00032280505 .0003547888 1071 2009 0 .11711815 10.886707 .9179215 0 0 1071 2010 0 .1163593 10.881946 .9170034 -.0003929117 .00027636442 1071 2011 0 .10215232 10.882565 .9165477 .00010996138 .000509118 1071 2012 0 .08800505 10.880064 .9163011 -.00003285825 .0006363138 end
Comment