Hello,
Have run a mixed-effects model using ibn. factor-variable operator for the factor variable regime type. My question is: How can I interpret the coefficients as there is no base level? I know this is probably a newbie question, but I cannot find an answer here nor in my searches on the Internet. Any assistance would be greatly appreciated!
Have run a mixed-effects model using ibn. factor-variable operator for the factor variable regime type. My question is: How can I interpret the coefficients as there is no base level? I know this is probably a newbie question, but I cannot find an answer here nor in my searches on the Internet. Any assistance would be greatly appreciated!
Code:
Mixed-effects logistic regression Number of obs = 294,794 Group variable: ccodecow Number of groups = 87 Obs per group: min = 372 avg = 3,388.4 max = 13,995 Integration points = 7 Wald chi2(16) = 8115.59 Log likelihood = -152891.51 Prob > chi2 = 0.0000 ----------------------------------------------------------------------------------- fight | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------------------+---------------------------------------------------------------- male | .6496688 .0090942 71.44 0.000 .6318446 .6674931 age | .0108852 .0012953 8.40 0.000 .0083465 .0134239 age_sq | -.0001825 .0000139 -13.18 0.000 -.0002097 -.0001554 married | .1587568 .0102303 15.52 0.000 .1387058 .1788078 divorced | .1030853 .0240524 4.29 0.000 .0559434 .1502272 income | -.0035996 .0016448 -2.19 0.029 -.0068234 -.0003757 college_edu | -.0589358 .0105463 -5.59 0.000 -.0796061 -.0382654 gdppc_lag | -.0000411 1.07e-06 -38.39 0.000 -.0000432 -.000039 | regime_type | 1 | 1.322575 .115204 11.48 0.000 1.09678 1.548371 2 | 1.671782 .117655 14.21 0.000 1.441182 1.902382 3 | 1.381307 .122293 11.30 0.000 1.141618 1.620997 5 | 4.024119 .5040793 7.98 0.000 3.036142 5.012097 6 | 1.581661 .1211819 13.05 0.000 1.344148 1.819173 7 | 1.192455 .1248406 9.55 0.000 .9477722 1.437138 9 | .8310635 .1340048 6.20 0.000 .5684189 1.093708 | cap_preponderance | -.0347508 .0101384 -3.43 0.001 -.0546216 -.0148799 ----------------------------------------------------------------------------------- ------------------------------------------------------------------------------ Random-effects Parameters | Estimate Std. Err. [95% Conf. Interval] -----------------------------+------------------------------------------------ ccodecow: Identity | var(_cons) | .9906641 .153608 .7310429 1.342487 ------------------------------------------------------------------------------ LR test vs. logistic model: chibar2(01) = 23441.05 Prob >= chibar2 = 0.0000
Comment