Dear Statalisters,
I apply 2SLS to deal with/ address the heterogeneity concerns between competition (the Lerner index) and financial performance of our banks. For stage two of the 2SLS model we need to use the fitted values of Lerner index. How to generate these fitted values (that is, what command to use).
Below you can find my approach to run first and second stage:
I am using OLS regression for the first stage, where I put the lag for the instrumental variable lerner
Then I run 2SLS for the second stage by using ivreg2:
Will appreciate if you can tell me whether this is the right way to generate the so-called fitted value or I have to use
Thank you in advance for the help!
Petko Bachvarov
I apply 2SLS to deal with/ address the heterogeneity concerns between competition (the Lerner index) and financial performance of our banks. For stage two of the 2SLS model we need to use the fitted values of Lerner index. How to generate these fitted values (that is, what command to use).
Below you can find my approach to run first and second stage:
I am using OLS regression for the first stage, where I put the lag for the instrumental variable lerner
Code:
regress roa l.lerner es escovid19 lernercovid19 institution customerdeposit_growth loan_asset noninterestincome size corporateloansgrowthrate luqidasset equitytotalassets car gdp_growth inflation gcc_d d_iraq d_bahrain d_syrianarabrepublic d_palestinianterritories d_oman d_tunisia d_yemen d_saudiarabia d_jordan d_kuwait d_iran d_unitedarabemirates d_qatar d_lebanon d_egypt d_morocco d_libya d_algeria d_israel d_malta note: d_qatar omitted because of collinearity note: d_libya omitted because of collinearity Source | SS df MS Number of obs = 2589 -------------+------------------------------ F( 34, 2554) = 5.95 Model | .44566372 34 .013107756 Prob > F = 0.0000 Residual | 5.62301178 2554 .002201649 R-squared = 0.0734 -------------+------------------------------ Adj R-squared = 0.0611 Total | 6.0686755 2588 .002344929 Root MSE = .04692 ------------------------------------------------------------------------------------------ roa | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------------------+---------------------------------------------------------------- lerner | L1. | -.0095362 .0036298 -2.63 0.009 -.0166539 -.0024185 | es | .0060945 .0045187 1.35 0.178 -.0027662 .0149551 escovid19 | -.0224527 .0062567 -3.59 0.000 -.0347215 -.010184 lernercovid19 | .0399304 .0073166 5.46 0.000 .0255834 .0542775 institution | .0002905 .0014833 0.20 0.845 -.0026181 .003199 customerdeposit_growth | .0052759 .003515 1.50 0.133 -.0016167 .0121684 loan_asset | -.0042449 .0035936 -1.18 0.238 -.0112916 .0028017 noninterestincome | .0421363 .0060258 6.99 0.000 .0303204 .0539522 size | -.0001906 .0006648 -0.29 0.774 -.0014941 .001113 corporateloansgrowthrate | .0023772 .0037773 0.63 0.529 -.0050297 .009784 luqidasset | -.0046013 .0038684 -1.19 0.234 -.0121868 .0029843 equitytotalassets | .0020457 .0039702 0.52 0.606 -.0057394 .0098308 car | .0099154 .0049099 2.02 0.044 .0002876 .0195433 gdp_growth | -.0176409 .0195054 -0.90 0.366 -.055889 .0206072 inflation | .0049327 .0110903 0.44 0.657 -.0168141 .0266795 gcc_d | .0121645 .0103575 1.17 0.240 -.0081455 .0324745 d_iraq | .0017969 .0096179 0.19 0.852 -.0170628 .0206565 d_bahrain | -.0178029 .0069053 -2.58 0.010 -.0313434 -.0042623 d_syrianarabrepublic | .0463541 .0097503 4.75 0.000 .0272347 .0654734 d_palestinianterritories | .0055617 .0106894 0.52 0.603 -.015399 .0265224 d_oman | -.006375 .0072343 -0.88 0.378 -.0205607 .0078107 d_tunisia | .0048229 .0091034 0.53 0.596 -.0130279 .0226737 d_yemen | .0154679 .0135754 1.14 0.255 -.011152 .0420877 d_saudiarabia | .012205 .0075289 1.62 0.105 -.0025583 .0269683 d_jordan | .0080886 .0092123 0.88 0.380 -.0099758 .026153 d_kuwait | -.0069919 .0072173 -0.97 0.333 -.0211443 .0071605 d_iran | .0086982 .0104401 0.83 0.405 -.0117737 .0291702 d_unitedarabemirates | -.0031995 .0070636 -0.45 0.651 -.0170504 .0106514 d_qatar | 0 (omitted) d_lebanon | .0042542 .0090399 0.47 0.638 -.0134721 .0219806 d_egypt | .0109324 .0089617 1.22 0.223 -.0066406 .0285053 d_morocco | .0037943 .00959 0.40 0.692 -.0150106 .0225993 d_libya | 0 (omitted) d_algeria | .0147692 .0097202 1.52 0.129 -.0042911 .0338295 d_israel | -.0024029 .0102098 -0.24 0.814 -.0224233 .0176175 d_malta | .0132458 .0099935 1.33 0.185 -.0063504 .032842 _cons | .0036968 .0107959 0.34 0.732 -.0174728 .0248665 ------------------------------------------------------------------------------------------
Code:
ivreg2 roa es escovid19 lernercovid19 institution customerdeposit_growth loan_asset noninterestincome size corporateloansgrowthrate luqidasset equitytotalassets car gdp_growth inflation (lerner=l.lerner) gcc_d d_iraq d_bahrain d_syrianarabrepublic d_palestinianterritories d_oman d_tunisia d_yemen d_saudiarabia d_jordan d_kuwait d_iran d_unitedarabemirates d_qatar d_lebanon d_egypt d_morocco d_libya d_algeria d_israel d_malta, endog(lerner) Warning: time variable banks1 has 767 gap(s) in relevant range Warning - collinearities detected Vars dropped: d_qatar d_malta IV (2SLS) estimation -------------------- Estimates efficient for homoskedasticity only Statistics consistent for homoskedasticity only Number of obs = 2589 F( 34, 2554) = 2.45 Prob > F = 0.0000 Total (centered) SS = 6.068675495 Centered R2 = -1.2526 Total (uncentered) SS = 6.511511255 Uncentered R2 = -1.0994 Residual SS = 13.67057107 Root MSE = .07267 ------------------------------------------------------------------------------------------ roa | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------------------+---------------------------------------------------------------- lerner | -.6281187 .370259 -1.70 0.090 -1.353813 .0975757 es | .0244415 .0129454 1.89 0.059 -.000931 .049814 escovid19 | -.072539 .0311774 -2.33 0.020 -.1336456 -.0114324 lernercovid19 | .111369 .0433862 2.57 0.010 .0263337 .1964043 institution | .0183552 .0108774 1.69 0.092 -.0029641 .0396745 customerdeposit_growth | .0162899 .0085851 1.90 0.058 -.0005367 .0331164 loan_asset | .0016047 .0066657 0.24 0.810 -.0114598 .0146693 noninterestincome | .0451403 .0094402 4.78 0.000 .0266379 .0636427 size | .0024808 .0018971 1.31 0.191 -.0012375 .0061992 corporateloansgrowthrate | -.0019177 .0063753 -0.30 0.764 -.0144131 .0105777 luqidasset | .0012117 .0066995 0.18 0.856 -.0119191 .0143425 equitytotalassets | .0057079 .0065284 0.87 0.382 -.0070876 .0185034 car | .014246 .007846 1.82 0.069 -.0011318 .0296238 gdp_growth | .011363 .03522 0.32 0.747 -.0576669 .0803929 inflation | .0594354 .0372514 1.60 0.111 -.013576 .1324468 gcc_d | .2015531 .1194758 1.69 0.092 -.0326152 .4357213 d_iraq | .4535345 .2741308 1.65 0.098 -.083752 .990821 d_bahrain | .2642198 .1674414 1.58 0.115 -.0639593 .592399 d_syrianarabrepublic | .4578509 .2506158 1.83 0.068 -.0333471 .9490489 d_palestinianterritories | .2953741 .1792197 1.65 0.099 -.05589 .6466382 d_oman | .0640446 .0428563 1.49 0.135 -.0199522 .1480413 d_tunisia | .3094563 .1871647 1.65 0.098 -.0573797 .6762924 d_yemen | .1987349 .1158293 1.72 0.086 -.0282864 .4257562 d_saudiarabia | -.132307 .08673 -1.53 0.127 -.3022947 .0376808 d_jordan | .2289398 .1379655 1.66 0.097 -.0414677 .4993473 d_kuwait | .2471417 .1505531 1.64 0.101 -.0479369 .5422204 d_iran | .0848352 .0536981 1.58 0.114 -.0204112 .1900816 d_unitedarabemirates | .0146991 .0151549 0.97 0.332 -.015004 .0444022 d_qatar | 0 (omitted) d_lebanon | .5465863 .3271319 1.67 0.095 -.0945803 1.187753 d_egypt | .4988974 .2950886 1.69 0.091 -.0794656 1.07726 d_morocco | .3185791 .1928848 1.65 0.099 -.0594682 .6966264 d_libya | -.0047826 .0163956 -0.29 0.771 -.0369174 .0273522 d_algeria | .2218783 .1297559 1.71 0.087 -.0324386 .4761953 d_israel | .4710253 .2863757 1.64 0.100 -.0902607 1.032311 d_malta | 0 (omitted) _cons | -.0379773 .0317201 -1.20 0.231 -.1001476 .024193 ------------------------------------------------------------------------------------------ Underidentification test (Anderson canon. corr. LM statistic): 5.202 Chi-sq(1) P-val = 0.0226 ------------------------------------------------------------------------------ Weak identification test (Cragg-Donald Wald F statistic): 5.142 Stock-Yogo weak ID test critical values: 10% maximal IV size 16.38 15% maximal IV size 8.96 20% maximal IV size 6.66 25% maximal IV size 5.53 Source: Stock-Yogo (2005). Reproduced by permission. ------------------------------------------------------------------------------ Sargan statistic (overidentification test of all instruments): 0.000 (equation exactly identified) -endog- option: Endogeneity test of endogenous regressors: 7.442 Chi-sq(1) P-val = 0.0064 Regressors tested: lerner ------------------------------------------------------------------------------ Instrumented: lerner Included instruments: es escovid19 lernercovid19 institution customerdeposit_growth loan_asset noninterestincome size corporateloansgrowthrate luqidasset equitytotalassets car gdp_growth inflation gcc_d d_iraq d_bahrain d_syrianarabrepublic d_palestinianterritories d_oman d_tunisia d_yemen d_saudiarabia d_jordan d_kuwait d_iran d_unitedarabemirates d_lebanon d_egypt d_morocco d_libya d_algeria d_israel Excluded instruments: L.lerner Dropped collinear: d_qatar d_malta ------------------------------------------------------------------------------ .
Code:
ivreg y (x1 = z1 z2) x2, first
Petko Bachvarov
Comment