Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • Poisson rather than the negative binomial/truncated Poisson rather than an untruncated Poisson

    Hello guys,

    1- How can I justify the use of the Poisson rather than the negative binomial with an econometric test in Stata?
    2- How can I justify the use of a truncated Poisson (without 0's) rather than an untruncated Poisson (with 0's) with an econometric test in Stata?

    Thank you,

  • #2
    Hi,

    I tried this command

    Code:
    lrtest nbreg poisson
    I got this message:
    df(unrestricted) = df(restricted) = 17

    Is there someone who can help me with this?

    Thanks,

    Comment


    • #3
      I run this
      Code:
      . lrtest nbreg poisson, force
      I got this

      HTML Code:
      Likelihood-ratio test                                 LR chi2(0)  =   -832.43
      (Assumption: poisson nested in nbreg)                 Prob > chi2 =         .
      Code:
      lrtest Poisson1 nbreg, force
      HTML Code:
      Likelihood-ratio test                                 LR chi2(0)  =      0.00
      (Assumption: nbreg nested in Poisson1)                Prob > chi2 =         .

      Is the result acceptable?

      Comment


      • #4
        Dear Hm Saleh,

        Please explain to us why you are doing this because otherwise it is difficult to make sense of what you are trying to do.

        Best wishes,

        Joao

        Comment


        • #5
          Dear @Joao Santos Silva

          I want to prove that Poisson is a suitable model for my data than Negative binomial regression.

          HTML Code:
          [CODE]nbreg TNCHILDREN i.Marital_Status Femaleearningsshareofhouseh HOUSEHOLD_INCOME  AGE age2 age3 ib1.HISPANIC HISPANIC_BORN_OUT_THE_US i.White_NON o.Asian_N
          > ON i.Other_NON i.Black_NON i.EDUCATION[/CODE]. nbreg TNCHILDREN i.Marital_Status Femaleearningsshareofhouseh HOUSEHOLD_INCOME  AGE age2 age3 ib1.HISPANIC HISPANIC_BORN_OUT_THE_US i.White_NON o.Asian_N
          > ON i.Other_NON i.Black_NON i.EDUCATION
          
          Fitting Poisson model:
          
          Iteration 0:   log likelihood = -3131.7546  
          Iteration 1:   log likelihood = -3131.7533  
          Iteration 2:   log likelihood = -3131.7533  
          
          Fitting constant-only model:
          
          Iteration 0:   log likelihood = -4094.3542  
          Iteration 1:   log likelihood = -3204.6718  
          Iteration 2:   log likelihood = -3204.6718  
          
          Fitting full model:
          
          Iteration 0:   log likelihood = -3132.4227  
          Iteration 1:   log likelihood = -3131.7534  
          Iteration 2:   log likelihood = -3131.7533  
          
          Negative binomial regression                      Number of obs   =       2125
                                                            LR chi2(16)     =     145.84
          Dispersion     = mean                             Prob > chi2     =     0.0000
          Log likelihood = -3131.7533                       Pseudo R2       =     0.0228
          
          ---------------------------------------------------------------------------------------------
                           TNCHILDREN |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
          ----------------------------+----------------------------------------------------------------
                       Marital_Status |
                                   2  |  -.1570887   .0492608    -3.19   0.001    -.2536381   -.0605394
                                   3  |  -.0438584   .0438118    -1.00   0.317     -.129728    .0420112
                                      |
          Femaleearningsshareofhouseh |  -.1502462   .0679401    -2.21   0.027    -.2834063   -.0170861
                     HOUSEHOLD_INCOME |  -.0192837    .006056    -3.18   0.001    -.0311532   -.0074142
                                  AGE |   .1685075   .1753308     0.96   0.337    -.1751345    .5121494
                                 age2 |     -.0033   .0054151    -0.61   0.542    -.0139134    .0073133
                                 age3 |   .0000218   .0000546     0.40   0.690    -.0000853    .0001288
                           2.HISPANIC |  -.1572284   .0915518    -1.72   0.086    -.3366667    .0222099
             HISPANIC_BORN_OUT_THE_US |  -.0766749   .0769876    -1.00   0.319    -.2275679    .0742181
                          1.White_NON |   .0834247    .075069     1.11   0.266    -.0637079    .2305574
                            Asian_NON |          0  (omitted)
                          1.Other_NON |   .2261337   .1080903     2.09   0.036     .0142807    .4379868
                          1.Black_NON |   .2607497   .0855347     3.05   0.002     .0931047    .4283947
                                      |
                            EDUCATION |
                                   2  |   .0327911   .0472893     0.69   0.488    -.0598943    .1254765
                                   3  |   .2063799    .068088     3.03   0.002     .0729299    .3398299
                                   4  |   -.031971   .0584246    -0.55   0.584    -.1464812    .0825392
                                   5  |   .0395897   .0448245     0.88   0.377    -.0482647    .1274441
                                      |
                                _cons |  -1.690558   1.855493    -0.91   0.362    -5.327256    1.946141
          ----------------------------+----------------------------------------------------------------
                             /lnalpha |  -28.50159          .                             .           .
          ----------------------------+----------------------------------------------------------------
                                alpha |   4.19e-13          .                             .           .
          ---------------------------------------------------------------------------------------------
          Likelihood-ratio test of alpha=0:  chibar2(01) =    0.00 Prob>=chibar2 = 1.000
          Code:
           tpoisson TNCHILDREN i.Marital_Status Femaleearningsshareofhouseh HOUSEHOLD_INCOME  AGE age2 age3 ib1.HISPANIC HISPANIC_BORN_OUT_THE_US i.White_NON o.Asia
          > n_NON i.Other_NON i.Black_NON i.EDUCATION
          HTML Code:
          Iteration 0:   log likelihood = -2809.6753  
          Iteration 1:   log likelihood = -2717.7323  
          Iteration 2:   log likelihood = -2715.5419  
          Iteration 3:   log likelihood = -2715.5387  
          Iteration 4:   log likelihood = -2715.5387  
          
          Truncated Poisson regression                      Number of obs   =       2125
          Truncation point: 0                               LR chi2(16)     =     388.05
                                                            Prob > chi2     =     0.0000
          Log likelihood = -2715.5387                       Pseudo R2       =     0.0667
          
          ---------------------------------------------------------------------------------------------
                           TNCHILDREN |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
          ----------------------------+----------------------------------------------------------------
                       Marital_Status |
                                   2  |  -.2737338   .0669437    -4.09   0.000     -.404941   -.1425265
                                   3  |  -.0760975   .0550223    -1.38   0.167    -.1839392    .0317441
                                      |
          Femaleearningsshareofhouseh |  -.2387593   .0865392    -2.76   0.006     -.408373   -.0691456
                     HOUSEHOLD_INCOME |  -.0311583   .0075559    -4.12   0.000    -.0459675   -.0163491
                                  AGE |   .7477299   .2850515     2.62   0.009     .1890393     1.30642
                                 age2 |  -.0185661   .0085606    -2.17   0.030    -.0353445   -.0017877
                                 age3 |   .0001564   .0000843     1.86   0.063    -8.77e-06    .0003216
                           2.HISPANIC |  -.2643195   .1210433    -2.18   0.029    -.5015601    -.027079
             HISPANIC_BORN_OUT_THE_US |  -.1273851   .0968979    -1.31   0.189    -.3173014    .0625313
                          1.White_NON |   .1437621   .1010381     1.42   0.155    -.0542689    .3417931
                            Asian_NON |          0  (omitted)
                          1.Other_NON |   .3748508   .1382713     2.71   0.007      .103844    .6458575
                          1.Black_NON |   .4289715    .112388     3.82   0.000      .208695    .6492479
                                      |
                            EDUCATION |
                                   2  |   .0537742     .06087     0.88   0.377    -.0655288    .1730772
                                   3  |   .3164464   .0837348     3.78   0.000     .1523291    .4805636
                                   4  |  -.0592162   .0774537    -0.76   0.445    -.2110227    .0925903
                                   5  |   .0632101   .0579615     1.09   0.275    -.0503924    .1768125
                                      |
                                _cons |  -9.010956   3.112718    -2.89   0.004    -15.11177   -2.910141
          ---------------------------------------------------------------------------------------------

          Comment


          • #6
            Does my result make sense?

            HTML Code:
            . lrtest nbreg poisson, force
            
            Likelihood-ratio test                                 LR chi2(0)  =   -832.43
            (Assumption: poisson nested in nbreg)                 Prob > chi2 =         .
            
            . lrtest Poisson1 nbreg, force
            
            Likelihood-ratio test                                 LR chi2(0)  =      0.00
            (Assumption: nbreg nested in Poisson1)                Prob > chi2 =         .

            Comment


            • #7
              Dear Hm Saleh,

              I do not understand why you are comparing results from nbreg with results from truncated Poisson. In any case, using Poisson (not truncated) is likely to be preferable to NB, and the LR tests you report are unlikely to be valid.

              Best wishes,

              Joao

              Comment

              Working...
              X