Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • Need p-values for pwcompare or contrast using mimrgns

    Hello,

    I am able to produce pairwise comparisons or contrasts with mimrgns with the contrast dy/dx, SE, and CIs, but not the p-values. When I use pwcompare(effects) to obtain p-values, the code stops running after definitions of the _at levels; no contrasts, SEs, or CIs follow. Can you help me to view the p-values for each comparison? Here is the code and output so far:

    mi estimate: svy: logistic Alcohol ib0
    > .Gender ib0.ParEdu ib0.Race c.Age c.Fa
    > mRel##c.FamHx c.FamRel##c.ParAtt_Alc c
    > .FamRel##c.FamMan c.FamRel##c.FamConfl

    Multiple-imputation estimates Imputations = 10
    Survey: Logistic regression Number of obs = 35,198

    Number of strata = 65 Population size = 160,214.29
    Number of PSUs = 625
    Average RVI = 0.0194
    Largest FMI = 0.0796
    Complete DF = 560
    DF adjustment: Small sample DF: min = 381.54
    avg = 541.95
    max = 557.71
    Model F test: Equal FMI F( 26, 557.4) = 95.72
    Within VCE type: Linearized Prob > F = 0.0000


    Alcohol Coefficient Std. err. t P>t [95% conf. interval]

    Gender
    Cis male -.1928048 .0964194 -2.00 0.046 -.3821948 -.0034148
    Trans .0719635 .3754549 0.19 0.848 -.6655192 .8094461
    Other -.0345483 .3089848 -0.11 0.911 -.6414849 .5723883

    ParEdu
    College -.0596366 .1959337 -0.30 0.761 -.4445058 .3252327
    Some College .0235523 .2043461 0.12 0.908 -.3778492 .4249538
    High School .0848689 .200519 0.42 0.672 -.3090073 .478745
    Some High Sch.. .2030791 .2303097 0.88 0.378 -.2493894 .6555476
    Grade School .. .0908952 .2586879 0.35 0.725 -.4172328 .5990233
    IDK -.4030745 .2327125 -1.73 0.084 -.8601862 .0540373
    N/A -.2749817 .4756616 -0.58 0.564 -1.210228 .6602645

    Race
    Hispanic .5485 .1195447 4.59 0.000 .3136827 .7833172
    Multiracial .1636419 .2024677 0.81 0.419 -.2340536 .5613374
    Asian -.370364 .2374845 -1.56 0.119 -.8368873 .0961594
    Black -.1600875 .2891246 -0.55 0.580 -.72803 .4078551
    Native American -.8731909 .3119547 -2.80 0.005 -1.485941 -.260441
    Pacific Islan.. -.0265193 .239738 -0.11 0.912 -.4974197 .4443811

    Age .2412244 .0225822 10.68 0.000 .1968664 .2855823
    FamRel -.6681113 .0935536 -7.14 0.000 -.8518781 -.4843445
    FamHx 1.089896 .2369505 4.60 0.000 .6244371 1.555355

    c.FamRel#c.FamHx .3814078 .1126626 3.39 0.001 .1600889 .6027267

    FamRel 0 (omitted)
    ParAtt_Alc .4816989 .1053049 4.57 0.000 .2748387 .6885591

    c.FamRel#
    c.ParAtt_Alc .2656229 .0583024 4.56 0.000 .1510997 .3801462

    FamRel 0 (omitted)
    FamMan .1173456 .0793785 1.48 0.140 -.0385741 .2732652

    c.FamRel#
    c.FamMan .2659852 .0422492 6.30 0.000 .1829977 .3489727

    FamRel 0 (omitted)
    FamConfl .2252861 .0783911 2.87 0.004 .0713066 .3792655

    c.FamRel#
    c.FamConfl -.0882419 .0421145 -2.10 0.037 -.1709645 -.0055192

    _cons -6.725947 .3969068 -16.95 0.000 -7.505585 -5.94631

    Note: Strata with single sampling unit centered at overall mean.



    mimrgns, dydx(FamRel) at (FamMan=(0(1)3)) predict(pr) vce(unconditional) cmdmargi
    > ns

    Multiple-imputation estimates Imputations = 10
    Average marginal effects Number of obs = 35,198

    Number of strata = 65 Population size = 160,214.29
    Number of PSUs = 625
    Average RVI = 0.0056
    Largest FMI = 0.0083
    Complete DF = 560
    DF adjustment: Small sample DF: min = 551.06
    avg = 552.73
    Within VCE type: Linearized max = 554.32

    Expression : Pr(Alcohol), predict(pr)
    dy/dx w.r.t. : FamRel

    1._at : FamMan = 0

    2._at : FamMan = 1

    3._at : FamMan = 2

    4._at : FamMan = 3


    dy/dx Std. err. t P>t [95% conf. interval]

    _at
    1 -.0141557 .002657 -5.33 0.000 -.0193748 -.0089366
    2 -.0108982 .002422 -4.50 0.000 -.0156556 -.0061407
    3 -.0006164 .0039758 -0.16 0.877 -.008426 .0071932
    4 .0226229 .010087 2.24 0.025 .0028094 .0424364


    mimrgns, dydx(FamRel) at (FamMan=(0(1)3)) predict(pr) vce(unconditional) pwcompar
    > e cmdmargins

    Multiple-imputation estimates
    Pairwise comparisons of average marginal effects

    Imputations = 10
    Number of obs = 35,198
    Number of strata = 65 Population size = 160,214.29
    Number of PSUs = 625
    Average RVI = 0.0056
    Largest FMI = 0.0083
    Complete DF = 560
    DF adjustment: Small sample DF: min = 551.06
    avg = 552.73
    Within VCE type: Linearized max = 554.32

    Expression : Pr(Alcohol), predict(pr)
    dy/dx w.r.t. : FamRel

    1._at : FamMan = 0

    2._at : FamMan = 1

    3._at : FamMan = 2

    4._at : FamMan = 3


    Contrast
    dy/dx Std. err. [95% conf. interval]

    _at
    2 vs 1 .0032575 .001418 .0004723 .0060427
    3 vs 1 .0135393 .0044723 .0047546 .022324
    4 vs 1 .0367786 .011111 .0149537 .0586034
    3 vs 2 .0102818 .0031301 .0041335 .0164301
    4 vs 2 .0335211 .0098788 .0141166 .0529256
    4 vs 3 .0232393 .0068077 .0098673 .0366113


    mimrgns, dydx(FamRel) at (FamMan=(0(1)3)) predict(pr) vce(unconditional) pwcompar
    > e(effects) cmdmargins

    Multiple-imputation estimates
    Pairwise comparisons of average marginal effects

    Imputations = 10
    Number of obs = 35,198
    Number of strata = 65 Population size = 160,214.29
    Number of PSUs = 625
    Average RVI = 0.0056
    Largest FMI = 0.0083
    Complete DF = 560
    DF adjustment: Small sample DF: min = 551.06
    avg = 552.73
    Within VCE type: Linearized max = 554.32

    Expression : Pr(Alcohol), predict(pr)
    dy/dx w.r.t. : FamRel

    1._at : FamMan = 0

    2._at : FamMan = 1

    3._at : FamMan = 2

    4._at : FamMan = 3

  • #2
    mimrgns is probably from SSC.

    It's a bug that I have fixed about a year ago but somehow the update on the SSC server failed. Thanks to Kit Baum, the most recent version of mimrgns (*! version 4.0.7 24jul2022 daniel klein) is now available from the SSC. Updating mimrgns should solve the problem.

    Comment


    • #3
      Thank you! Also, is it theoretically incorrect to calculate marginal effects for non-significant coefficients in a regression, and likewise, contrast non-significant marginal effects? From my ouput, I see that it's possible, but I'm trying to make sense of why and if it's important to present. daniel klein
      Last edited by Jessica Totsky; 06 Oct 2023, 13:58.

      Comment


      • #4
        I am sorry, I cannot generally answer the broader follow-up question. What is considered significant and what is not varies across fields. The same is probably true for what is and is not "theoretically" correct and almost certainly true for what is "important to present".

        Comment

        Working...
        X