Hello all
I was recommended to use -distplot - to demonstrate the goodness of matching pre matching and post matching
As my amateur solution was initially this:
- However I had a problem how to overlay these graphs onto one
However, someone told me to use -distplot-
I got to this:
The graph doesn't make sense - it's perhaps because I don't understand how to use it properly.
1. Would you recommend using distplot, and can you advise how to use it
2. If you wouldn't advise at point 1 can you advise how to overlay both graphs together ?
Sample data:
I was recommended to use -distplot - to demonstrate the goodness of matching pre matching and post matching
As my amateur solution was initially this:
- However I had a problem how to overlay these graphs onto one
Code:
Prematching: gen no = 1 graph bar sum(no) , over($treatment) over(Gender) asyvars Post matching: gen new1 = _weight*10 gen newweight = int (new1) //therefore controls with 0.33 become 0 graph bar sum(newweight) , over($treatment) over(Gender) asyvars
I got to this:
Code:
gen new=_weight*10 gen new3=int(new) distplot gender [fw=new3]
The graph doesn't make sense - it's perhaps because I don't understand how to use it properly.
1. Would you recommend using distplot, and can you advise how to use it
2. If you wouldn't advise at point 1 can you advise how to overlay both graphs together ?
Sample data:
Code:
* Example generated by -dataex-. For more info, type help dataex clear input float(gender smoking infection socialdeprivation ethnicity) double _pscore byte(_treated _support) double(_weight _infection) byte(_id _n1 _n2 _n3) float _nn double _pdif 1 0 0 7 4 .14629124373657137 0 1 .3333333333333333 . 1 . . . 0 . 0 0 0 7 1 .18353598336623161 0 1 .3333333333333333 . 2 . . . 0 . 1 0 0 6 4 .23642515629258887 0 1 .6666666666666666 . 3 . . . 0 . 1 0 1 4 1 .27681680297995453 0 1 .3333333333333333 . 4 . . . 0 . 0 0 0 6 1 .2888530710771261 0 1 .3333333333333333 . 5 . . . 0 . 0 0 0 6 2 .3595669083790513 0 1 .3333333333333333 . 6 . . . 0 . 1 0 0 3 1 .4088562831270797 0 1 .6666666666666666 . 7 . . . 0 . 1 0 0 2 1 .5554993045631528 0 1 1.6666666666666665 . 8 . . . 0 . 1 0 1 1 1 .6930733259357975 0 1 1.3333333333333333 . 9 . . . 0 . 1 0 0 2 3 .7048182691423677 0 1 1 . 10 . . . 0 . 1 1 1 5 1 .17480944488523578 1 1 1 0 11 2 1 3 3 .008726538480995832 1 1 1 5 3 .2881297448796828 1 1 1 .3333333333333333 12 5 4 3 3 .0007233261974433081 0 1 1 5 2 .5035916419173779 1 1 1 0 13 8 7 6 3 .051907662645774844 1 1 1 2 1 .5554993045631528 1 1 1 .3333333333333333 14 8 9 7 3 0 1 1 0 2 2 .6333538983172218 1 1 1 .3333333333333333 15 9 10 8 3 .05971942761857574 1 1 0 2 2 .6333538983172218 1 1 1 .3333333333333333 16 9 10 8 3 .05971942761857574 1 1 1 1 1 .6930733259357975 1 1 1 .3333333333333333 17 9 10 8 3 0 0 1 1 1 1 .8866625742391517 1 0 . . 18 . . . . . 0 1 1 1 1 .8866625742391517 1 0 . . 19 . . . . . 0 1 1 1 3 .9372933094185172 1 0 . . 20 . . . . . end label values gender Gender label def Gender 0 "Female", modify label def Gender 1 "Male", modify label values smoking Smoking label def Smoking 0 "Nonsmoker", modify label def Smoking 1 "Smoker", modify label values socialdeprivation social label def social 1 "Most deprived", modify label def social 7 "Least deprived", modify label values ethnicity Ethnicity label def Ethnicity 1 "White", modify label def Ethnicity 2 "Asian", modify label def Ethnicity 3 "Black African", modify label def Ethnicity 4 "Mixed", modify label values _treated _treated label def _treated 0 "Untreated", modify label def _treated 1 "Treated", modify label values _support _support label def _support 0 "Off support", modify label def _support 1 "On support", modify
Comment