Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • Problems with Firth Logit

    Hello Stata Listers,

    I have a dataset with some collinearity and small sample bias so have opted for using firthlogit as opposed to a traditional logit model. However, when I run the same command using firthlogit instead of just logit, the model never converges. I have tried to run this on Stata 16 and Stata 18 and the model estimates are never produced (i.e., I let the machines run for several hours with no result). Is there something I'm doing wrong here? I've looked at the data and other model specifications work fine--it's just the firthlogit command that is causing an issue.

    Code:
     logit stateorder medicaid_expansion percapita_deaths ideology_diff prop_neighbors div_gov demgov, nolog
    HTML Code:
     note: div_gov != 0 predicts success perfectly
          div_gov dropped and 1107132 obs not used
    
    note: demgov != 0 predicts success perfectly
          demgov dropped and 1277460 obs not used
    
    
    Logistic regression                             Number of obs     =  1,873,608
                                                    LR chi2(4)        =  218763.82
                                                    Prob > chi2       =     0.0000
    Log likelihood = -1189304.2                     Pseudo R2         =     0.0842
    
    ------------------------------------------------------------------------------------
            stateorder |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
    -------------------+----------------------------------------------------------------
    medicaid_expansion |   .7679144   .0021245   361.46   0.000     .7637505    .7720783
      percapita_deaths |   430.3479   2.385946   180.37   0.000     425.6715    435.0242
         ideology_diff |   .0130708   .0001466    89.17   0.000     .0127835    .0133581
        prop_neighbors |  -2.810622   .0084456  -332.79   0.000    -2.827175   -2.794069
               div_gov |          0  (omitted)
                demgov |          0  (omitted)
                 _cons |   .8516809   .0064683   131.67   0.000     .8390034    .8643585
    ------------------------------------------------------------------------------------
    Code:
    firthlogit stateorder medicaid_expansion percapita_deaths ideology_diff prop_neighbors div_gov##demgov, nolog
    (I have had to break this several times because nothing happens in the Results area of Stata.)
    Last edited by Davia Downey; 01 Oct 2023, 10:49. Reason: added tags

  • #2
    Woah, why are div_gov and demgov omitted in the logit model? Are they perfectly collinear?

    Comment


    • #3
      Yes, there's a small portion of the data that is categorized this way which is why I'm using Firth.

      Comment


      • #4
        I am perplexed that you are concerned about small sample size when your estimation sample is nearly 2,000,000 observations. Do you mean, instead, that the stateorder outcome is very rare? If not, why do you feel the need to use penalized estimation?

        Next, the fact that something runs for a few hours and does not converge does not mean that it won't eventually. What are you seeing during those two hours? If the iterations show any progress at all, then you should let it continue to run. Only if the penalized log likelihood is not changing at all and giving "not concave" warnings, or if it is going around in circles can you conclude that all hope of convergence is lost. These are not simple models, and in large data sets they can take a long time to reach convergence. Days, even weeks may be needed.

        Comment


        • #5
          Not overall sample size, we are concerned about the very small sample of observations with just Divided Government and Democratic Governors which is a key piece of theory (I.e., these specific observations make up less than 2% of the overall obs). I do recognize that the model will take time, but I am simply re-running to check the specification and it's taking a long time. Guess I'll keep waiting.
          Last edited by Davia Downey; 01 Oct 2023, 11:10.

          Comment


          • #6
            Originally posted by Davia Downey View Post
            . . . I am simply re-running to check the specification and it's taking a long time. Guess I'll keep waiting.
            Take a random sample, say, 2%, which should give you a perfectly adequate answer to your specification questions in less than one minute.

            If you're worried about representativeness (stability of the estimates), then take another random 2% sample and see whether the estimates are sufficiently close between the two samples for your purposes.

            See below. (Begin at the "Begin here" comment; the top part is just to create a dataset for illustration that mimics yours in essential features of the problem and verifies it through reproducing your logistic regression.)

            .ΓΏ
            .ΓΏversionΓΏ18.0

            .ΓΏ
            .ΓΏclearΓΏ*

            .ΓΏ
            .ΓΏ//ΓΏseedem
            .ΓΏsetΓΏseedΓΏ2128452337

            .ΓΏ
            .ΓΏquietlyΓΏsetΓΏobsΓΏ`=1107132ΓΏ+ΓΏ1277460ΓΏ+ΓΏ1873608'

            .ΓΏforeachΓΏvarΓΏofΓΏnewlistΓΏmedicaid_expansionΓΏpercapita_deathsΓΏideology_diffΓΏ///
            >ΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏprop_neighborsΓΏ{
            ΓΏΓΏ2.ΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏgenerateΓΏdoubleΓΏ`var'ΓΏ=ΓΏruniform()
            ΓΏΓΏ3.ΓΏ}

            .ΓΏgenerateΓΏdoubleΓΏxbΓΏ=ΓΏ.8516809ΓΏ+ΓΏ.7679144ΓΏ*ΓΏmedicaid_expansionΓΏ+ΓΏ///
            >ΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏ430.3479ΓΏ*ΓΏpercapita_deathsΓΏ+ΓΏ.0130708ΓΏ*ΓΏideology_diffΓΏ+ΓΏ///
            >ΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏ-2.810622ΓΏ*ΓΏprop_neighbors

            .ΓΏgenerateΓΏdoubleΓΏprbΓΏ=ΓΏinvlogit(xb)

            .ΓΏquietlyΓΏreplaceΓΏprbΓΏ=ΓΏcond(prbΓΏ<ΓΏ1e-8,ΓΏ1e-8,ΓΏcond(prbΓΏ>ΓΏ1-1e-8,ΓΏ1-1e-8,ΓΏprb))

            .ΓΏgenerateΓΏbyteΓΏstateorderΓΏ=ΓΏrbinomial(1,ΓΏprb)

            .ΓΏtabulateΓΏstateorder

            ΓΏstateorderΓΏ|ΓΏΓΏΓΏΓΏΓΏΓΏFreq.ΓΏΓΏΓΏΓΏΓΏPercentΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏCum.
            ------------+-----------------------------------
            ΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏ0ΓΏ|ΓΏΓΏΓΏΓΏΓΏΓΏ8,375ΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏ0.20ΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏ0.20
            ΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏ1ΓΏ|ΓΏΓΏ4,249,825ΓΏΓΏΓΏΓΏΓΏΓΏΓΏ99.80ΓΏΓΏΓΏΓΏΓΏΓΏ100.00
            ------------+-----------------------------------
            ΓΏΓΏΓΏΓΏΓΏΓΏTotalΓΏ|ΓΏΓΏ4,258,200ΓΏΓΏΓΏΓΏΓΏΓΏ100.00

            .ΓΏ
            .ΓΏgenerateΓΏdoubleΓΏranduΓΏ=ΓΏruniform()

            .ΓΏisidΓΏrandu

            .ΓΏgsortΓΏ-stateorderΓΏ+randu

            .ΓΏgenerateΓΏbyteΓΏdiv_govΓΏ=ΓΏ_nΓΏ<=ΓΏ1107132

            .ΓΏgsortΓΏ+div_govΓΏ-stateorderΓΏ+randu

            .ΓΏgenerateΓΏbyteΓΏdemgovΓΏ=ΓΏ_nΓΏ<=ΓΏ1277460

            .ΓΏdropΓΏrandu

            .ΓΏ
            .ΓΏlogitΓΏstateorderΓΏc.(medicaid_expansionΓΏpercapita_deathsΓΏideology_diffΓΏ///
            >ΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏprop_neighbors)ΓΏi.div_govΓΏi.demgov,ΓΏnolog
            note:ΓΏ0.div_govΓΏ!=ΓΏ1ΓΏpredictsΓΏsuccessΓΏperfectly;
            ΓΏΓΏΓΏΓΏΓΏΓΏ0.div_govΓΏomittedΓΏandΓΏ1107132ΓΏobsΓΏnotΓΏused.

            note:ΓΏ0.demgovΓΏ!=ΓΏ1ΓΏpredictsΓΏsuccessΓΏperfectly;
            ΓΏΓΏΓΏΓΏΓΏΓΏ0.demgovΓΏomittedΓΏandΓΏ1277460ΓΏobsΓΏnotΓΏused.

            note:ΓΏ1.div_govΓΏomittedΓΏbecauseΓΏofΓΏcollinearity.
            note:ΓΏ1.demgovΓΏomittedΓΏbecauseΓΏofΓΏcollinearity.

            LogisticΓΏregressionΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏNumberΓΏofΓΏobsΓΏ=ΓΏ1,873,608
            ΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏLRΓΏchi2(4)ΓΏΓΏΓΏΓΏ=ΓΏΓΏ82945.51
            ΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏProbΓΏ>ΓΏchi2ΓΏΓΏΓΏ=ΓΏΓΏΓΏΓΏ0.0000
            LogΓΏlikelihoodΓΏ=ΓΏ-12195.349ΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏPseudoΓΏR2ΓΏΓΏΓΏΓΏΓΏ=ΓΏΓΏΓΏΓΏ0.7728

            ------------------------------------------------------------------------------------
            ΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏstateorderΓΏ|ΓΏCoefficientΓΏΓΏStd.ΓΏerr.ΓΏΓΏΓΏΓΏΓΏΓΏzΓΏΓΏΓΏΓΏP>|z|ΓΏΓΏΓΏΓΏΓΏ[95%ΓΏconf.ΓΏinterval]
            -------------------+----------------------------------------------------------------
            medicaid_expansionΓΏ|ΓΏΓΏΓΏ.7675741ΓΏΓΏΓΏ.0559255ΓΏΓΏΓΏΓΏ13.72ΓΏΓΏΓΏ0.000ΓΏΓΏΓΏΓΏΓΏ.6579621ΓΏΓΏΓΏΓΏ.8771861
            ΓΏΓΏpercapita_deathsΓΏ|ΓΏΓΏΓΏ434.9579ΓΏΓΏΓΏ5.335517ΓΏΓΏΓΏΓΏ81.52ΓΏΓΏΓΏ0.000ΓΏΓΏΓΏΓΏΓΏ424.5005ΓΏΓΏΓΏΓΏ445.4153
            ΓΏΓΏΓΏΓΏΓΏideology_diffΓΏ|ΓΏΓΏ-.0734461ΓΏΓΏΓΏ.0552976ΓΏΓΏΓΏΓΏ-1.33ΓΏΓΏΓΏ0.184ΓΏΓΏΓΏΓΏ-.1818274ΓΏΓΏΓΏΓΏ.0349352
            ΓΏΓΏΓΏΓΏprop_neighborsΓΏ|ΓΏΓΏΓΏ-2.84587ΓΏΓΏΓΏ.0603477ΓΏΓΏΓΏ-47.16ΓΏΓΏΓΏ0.000ΓΏΓΏΓΏΓΏ-2.964149ΓΏΓΏΓΏΓΏ-2.72759
            ΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏ1.div_govΓΏ|ΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏ0ΓΏΓΏ(empty)
            ΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏ1.demgovΓΏ|ΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏ0ΓΏΓΏ(empty)
            ΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏ_consΓΏ|ΓΏΓΏΓΏ.0885993ΓΏΓΏΓΏ.0547937ΓΏΓΏΓΏΓΏΓΏ1.62ΓΏΓΏΓΏ0.106ΓΏΓΏΓΏΓΏ-.0187945ΓΏΓΏΓΏΓΏΓΏ.195993
            ------------------------------------------------------------------------------------
            Note:ΓΏ0ΓΏfailuresΓΏandΓΏ1787579ΓΏsuccessesΓΏcompletelyΓΏdetermined.

            .ΓΏ
            .ΓΏ*
            .ΓΏ*ΓΏBeginΓΏhere
            .ΓΏ*
            .ΓΏ
            .ΓΏ//ΓΏFirstΓΏ2%ΓΏsample
            .ΓΏtimerΓΏclearΓΏ1

            .ΓΏtimerΓΏonΓΏ1

            .ΓΏgenerateΓΏdoubleΓΏranduΓΏ=ΓΏruniform()

            .ΓΏisidΓΏrandu

            .ΓΏgenerateΓΏbyteΓΏtouseΓΏ=ΓΏranduΓΏ<=ΓΏ0.02

            .ΓΏfirthlogitΓΏstateorderΓΏc.(medicaid_expansionΓΏpercapita_deathsΓΏideology_diffΓΏ///
            >ΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏprop_neighbors)ΓΏi.(div_govΓΏdemgov)ΓΏifΓΏtouse,ΓΏnolog

            ΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏNumberΓΏofΓΏobsΓΏ=ΓΏ85,112
            ΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏWaldΓΏchi2(6)ΓΏΓΏ=ΓΏ173.51
            PenalizedΓΏlogΓΏlikelihoodΓΏ=ΓΏ-248.91756ΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏProbΓΏ>ΓΏchi2ΓΏΓΏΓΏ=ΓΏ0.0000

            ------------------------------------------------------------------------------------
            ΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏstateorderΓΏ|ΓΏCoefficientΓΏΓΏStd.ΓΏerr.ΓΏΓΏΓΏΓΏΓΏΓΏzΓΏΓΏΓΏΓΏP>|z|ΓΏΓΏΓΏΓΏΓΏ[95%ΓΏconf.ΓΏinterval]
            -------------------+----------------------------------------------------------------
            medicaid_expansionΓΏ|ΓΏΓΏΓΏ.7500148ΓΏΓΏΓΏ.3866146ΓΏΓΏΓΏΓΏΓΏ1.94ΓΏΓΏΓΏ0.052ΓΏΓΏΓΏΓΏ-.0077358ΓΏΓΏΓΏΓΏ1.507765
            ΓΏΓΏpercapita_deathsΓΏ|ΓΏΓΏΓΏ448.0953ΓΏΓΏΓΏ38.34081ΓΏΓΏΓΏΓΏ11.69ΓΏΓΏΓΏ0.000ΓΏΓΏΓΏΓΏΓΏ372.9487ΓΏΓΏΓΏΓΏ523.2419
            ΓΏΓΏΓΏΓΏΓΏideology_diffΓΏ|ΓΏΓΏ-.1715026ΓΏΓΏΓΏ.3773157ΓΏΓΏΓΏΓΏ-0.45ΓΏΓΏΓΏ0.649ΓΏΓΏΓΏΓΏ-.9110278ΓΏΓΏΓΏΓΏ.5680226
            ΓΏΓΏΓΏΓΏprop_neighborsΓΏ|ΓΏΓΏ-2.755213ΓΏΓΏΓΏ.4016178ΓΏΓΏΓΏΓΏ-6.86ΓΏΓΏΓΏ0.000ΓΏΓΏΓΏΓΏ-3.542369ΓΏΓΏΓΏ-1.968056
            ΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏ1.div_govΓΏ|ΓΏΓΏΓΏ5.335676ΓΏΓΏΓΏ1.426213ΓΏΓΏΓΏΓΏΓΏ3.74ΓΏΓΏΓΏ0.000ΓΏΓΏΓΏΓΏΓΏΓΏ2.54035ΓΏΓΏΓΏΓΏ8.131002
            ΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏ1.demgovΓΏ|ΓΏΓΏΓΏ5.568262ΓΏΓΏΓΏ1.428543ΓΏΓΏΓΏΓΏΓΏ3.90ΓΏΓΏΓΏ0.000ΓΏΓΏΓΏΓΏΓΏ2.768369ΓΏΓΏΓΏΓΏ8.368155
            ΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏ_consΓΏ|ΓΏΓΏ-.1324304ΓΏΓΏΓΏ.3792277ΓΏΓΏΓΏΓΏ-0.35ΓΏΓΏΓΏ0.727ΓΏΓΏΓΏΓΏΓΏ-.875703ΓΏΓΏΓΏΓΏ.6108422
            ------------------------------------------------------------------------------------

            .ΓΏtimerΓΏoffΓΏ1

            .ΓΏ
            .ΓΏ//ΓΏSecondΓΏ2%ΓΏsample
            .ΓΏtimerΓΏclearΓΏ2

            .ΓΏtimerΓΏonΓΏ2

            .ΓΏquietlyΓΏreplaceΓΏranduΓΏ=ΓΏruniform()

            .ΓΏisidΓΏrandu

            .ΓΏquietlyΓΏreplaceΓΏtouseΓΏ=ΓΏranduΓΏ<=ΓΏ0.02

            .ΓΏfirthlogitΓΏstateorderΓΏc.(medicaid_expansionΓΏpercapita_deathsΓΏideology_diffΓΏ///
            >ΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏprop_neighbors)ΓΏi.(div_govΓΏdemgov)ΓΏifΓΏtouse,ΓΏnolog

            ΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏNumberΓΏofΓΏobsΓΏ=ΓΏ85,425
            ΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏWaldΓΏchi2(6)ΓΏΓΏ=ΓΏ154.07
            PenalizedΓΏlogΓΏlikelihoodΓΏ=ΓΏ-212.21173ΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏProbΓΏ>ΓΏchi2ΓΏΓΏΓΏ=ΓΏ0.0000

            ------------------------------------------------------------------------------------
            ΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏstateorderΓΏ|ΓΏCoefficientΓΏΓΏStd.ΓΏerr.ΓΏΓΏΓΏΓΏΓΏΓΏzΓΏΓΏΓΏΓΏP>|z|ΓΏΓΏΓΏΓΏΓΏ[95%ΓΏconf.ΓΏinterval]
            -------------------+----------------------------------------------------------------
            medicaid_expansionΓΏ|ΓΏΓΏΓΏ.3827062ΓΏΓΏΓΏ.4088818ΓΏΓΏΓΏΓΏΓΏ0.94ΓΏΓΏΓΏ0.349ΓΏΓΏΓΏΓΏ-.4186875ΓΏΓΏΓΏΓΏΓΏΓΏ1.1841
            ΓΏΓΏpercapita_deathsΓΏ|ΓΏΓΏΓΏ479.6745ΓΏΓΏΓΏ43.12864ΓΏΓΏΓΏΓΏ11.12ΓΏΓΏΓΏ0.000ΓΏΓΏΓΏΓΏΓΏ395.1439ΓΏΓΏΓΏΓΏ564.2051
            ΓΏΓΏΓΏΓΏΓΏideology_diffΓΏ|ΓΏΓΏΓΏ.4434985ΓΏΓΏΓΏ.4177734ΓΏΓΏΓΏΓΏΓΏ1.06ΓΏΓΏΓΏ0.288ΓΏΓΏΓΏΓΏ-.3753224ΓΏΓΏΓΏΓΏ1.262319
            ΓΏΓΏΓΏΓΏprop_neighborsΓΏ|ΓΏΓΏ-2.995258ΓΏΓΏΓΏ.4545999ΓΏΓΏΓΏΓΏ-6.59ΓΏΓΏΓΏ0.000ΓΏΓΏΓΏΓΏ-3.886257ΓΏΓΏΓΏ-2.104259
            ΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏ1.div_govΓΏ|ΓΏΓΏΓΏ5.435063ΓΏΓΏΓΏ1.429734ΓΏΓΏΓΏΓΏΓΏ3.80ΓΏΓΏΓΏ0.000ΓΏΓΏΓΏΓΏΓΏ2.632836ΓΏΓΏΓΏΓΏ8.237289
            ΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏ1.demgovΓΏ|ΓΏΓΏΓΏ5.373212ΓΏΓΏΓΏ1.429395ΓΏΓΏΓΏΓΏΓΏ3.76ΓΏΓΏΓΏ0.000ΓΏΓΏΓΏΓΏΓΏΓΏ2.57165ΓΏΓΏΓΏΓΏ8.174775
            ΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏ_consΓΏ|ΓΏΓΏ-.1177813ΓΏΓΏΓΏ.4004574ΓΏΓΏΓΏΓΏ-0.29ΓΏΓΏΓΏ0.769ΓΏΓΏΓΏΓΏ-.9026633ΓΏΓΏΓΏΓΏ.6671007
            ------------------------------------------------------------------------------------

            .ΓΏtimerΓΏoffΓΏ2

            .ΓΏ
            .ΓΏtimerΓΏlist
            ΓΏΓΏΓΏ1:ΓΏΓΏΓΏΓΏΓΏ50.51ΓΏ/ΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏ1ΓΏ=ΓΏΓΏΓΏΓΏΓΏΓΏ50.5090
            ΓΏΓΏΓΏ2:ΓΏΓΏΓΏΓΏΓΏ48.00ΓΏ/ΓΏΓΏΓΏΓΏΓΏΓΏΓΏΓΏ1ΓΏ=ΓΏΓΏΓΏΓΏΓΏΓΏ47.9980

            .ΓΏ
            .ΓΏexit

            endΓΏofΓΏdo-file


            .

            Comment


            • #7
              This has been resolved. I had a corrupted copy of the data, but found the original.

              Comment

              Working...
              X