Hello,
I am running a regression that looks like this.
these are my results.
I would like to test if my coefficients are significantly different from one another using bootstrapped standard errors and accounting the bonferroni adjustment.
I do not understand however why I obtain different results. if I use 'boottest {4.brand_en=_cons}' from "boottest {4.brand_en}".
Here is an example. If anyone could help understand this it would be ideal.
here is an example
As you can see the Prob>|t| value is different if I specify 'boottest {4.brand_en=_cons}' or "boottest {4.brand_en}".
I am running a regression that looks like this.
Code:
sysuse auto,clear gen brand = word(make, 1) encode brand, generate(brand_en) reg price ib1.brand_en
Code:
Source | SS df MS Number of obs = 74 -------------+---------------------------------- F(22, 51) = 9.52 Model | 510687926 22 23213087.6 Prob > F = 0.0000 Residual | 124377470 51 2438773.92 R-squared = 0.8042 -------------+---------------------------------- Adj R-squared = 0.7197 Total | 635065396 73 8699525.97 Root MSE = 1561.7 ------------------------------------------------------------------------------ price | Coefficient Std. err. t P>|t| [95% conf. interval] -------------+---------------------------------------------------------------- brand_en | Audi | 3776.833 1425.592 2.65 0.011 914.8386 6638.828 BMW | 5519.333 1803.247 3.06 0.004 1899.165 9139.502 Buick | 1859.619 1077.646 1.73 0.090 -303.8456 4023.084 Cad. | 9714.667 1275.088 7.62 0.000 7154.821 12274.51 Chev. | 156.6667 1104.259 0.14 0.888 -2060.225 2373.558 Datsun | 1790.833 1192.736 1.50 0.139 -603.6832 4185.35 Dodge | 839.8333 1192.736 0.70 0.485 -1554.683 3234.35 Fiat | 80.33333 1803.247 0.04 0.965 -3539.835 3700.502 Ford | 72.33333 1425.592 0.05 0.960 -2789.661 2934.328 Honda | 933.3333 1425.592 0.65 0.516 -1928.661 3795.328 Linc. | 8636.667 1275.088 6.77 0.000 6076.821 11196.51 Mazda | -220.6667 1803.247 -0.12 0.903 -3840.835 3399.502 Merc. | 698.1667 1104.259 0.63 0.530 -1518.725 2915.058 Olds | 1835.19 1077.646 1.70 0.095 -328.2742 3998.655 Peugeot | 8774.333 1803.247 4.87 0.000 5154.165 12394.5 Plym. | 604.3333 1140.473 0.53 0.598 -1685.262 2893.929 Pont. | 663.1667 1104.259 0.60 0.551 -1553.725 2880.058 Renault | -320.6667 1803.247 -0.18 0.860 -3940.835 3299.502 Subaru | -417.6667 1803.247 -0.23 0.818 -4037.835 3202.502 Toyota | 906.3333 1275.088 0.71 0.480 -1653.513 3466.179 VW | 1805.333 1192.736 1.51 0.136 -589.1832 4199.85 Volvo | 7779.333 1803.247 4.31 0.000 4159.165 11399.5 | _cons | 4215.667 901.6233 4.68 0.000 2405.582 6025.751 ------------------------------------------------------------------------------
I do not understand however why I obtain different results. if I use 'boottest {4.brand_en=_cons}' from "boottest {4.brand_en}".
Here is an example. If anyone could help understand this it would be ideal.
here is an example
Code:
. boottest {4.brand_en=_cons} /// > {4.brand_en=10.brand_en}, /// > madjust(bonferroni) nograph reps(99) seed(123) Wild bootstrap-t, null imposed, 99 replications, Wald test, Rademacher weights: 4.brand_en=_cons t(51) = -1.2417 Prob>|t| = 0.1717 Bonferroni-adjusted prob = 0.3434 95% confidence set for null hypothesis expression: [−30073, 22243] Wild bootstrap-t, null imposed, 99 replications, Wald test, Rademacher weights: 4.brand_en=10.brand_en t(51) = 1.4274 Prob>|t| = 0.2222 Bonferroni-adjusted prob = 0.4444 95% confidence set for null hypothesis expression: [−7635, 11210] . . boottest {4.brand_en} /// > {4.brand_en=10.brand_en}, /// export private vs export state *** no-diff > madjust(bonferroni) nograph reps(99) seed(123) Wild bootstrap-t, null imposed, 99 replications, Wald test, Rademacher weights: 4.brand_en t(51) = 1.7256 Prob>|t| = 0.1313 Bonferroni-adjusted prob = 0.2626 95% confidence set for null hypothesis expression: [−5296, 9254] Wild bootstrap-t, null imposed, 99 replications, Wald test, Rademacher weights: 4.brand_en=10.brand_en t(51) = 1.4274 Prob>|t| = 0.2222 Bonferroni-adjusted prob = 0.4444 95% confidence set for null hypothesis expression: [−7635, 11210]
Comment