Hello, I have two datasets.
I would like to merge the individuals in the first dataset with the average gdppc (gdp per capita) and leb (life expectancy at birth) in dataset 2 according to the individuals’ life span in dataset 1 and by country. For example, for individual #1 in "BEL" 224 1865 1790 - first dataset - I want to merge two variables with average values of leb and gdppc calculated for the interval 1790 1865 in the second dataset (country panel).
Thank you, Alberto
Dataset 1 – people ids
* Example generated by -dataex-. For more info, type help dataex
clear
input str3 iso3c int(id death_year birth_year)
"BEL" 224 1865 1790
"BEL" 225 1850 1812
"BEL" 226 1835 1778
"BEL" 227 1824 1779
"BEL" 228 1860 1781
"BEL" 229 1844 1784
"BEL" 230 1851 1785
"BEL" 231 1861 1786
"BEL" 232 1865 1790
"BEL" 233 1909 1835
"BEL" 234 1902 1836
"BEL" 235 1905 1837
"BEL" 236 1927 1840
"BEL" 237 1934 1875
"BEL" 238 1965 1876
"BEL" 239 1891 1869
"BEL" 240 1948 1870
"BEL" 241 1958 1872
"BEL" 242 1983 1901
"BEL" 243 1935 1905
"BEL" 244 2002 1916
"BEL" 245 1983 1903
"BEL" 246 2001 1906
"BEL" 247 1993 1930
"BEL" 248 2014 1928
"BEL" 249 2005 1927
"BEL" 250 . 1934
"BEL" 251 2009 1942
"BEL" 252 . 1951
"BEL" 253 . 1956
"BEL" 254 2022 1960
"DNK" 1 1766 1723
"DNK" 2 1751 1724
"DNK" 3 1796 1729
"DNK" 4 1756 1726
"DNK" 5 1808 1749
"DNK" 6 1775 1751
"DNK" 7 1813 1746
"DNK" 8 1820 1747
"DNK" 9 1831 1750
"DNK" 10 1839 1768
"DNK" 11 1852 1767
"DNK" 12 1843 1771
"DNK" 13 1848 1786
"DNK" 14 1881 1796
"DNK" 15 1850 1788
"DNK" 16 1864 1789
"DNK" 17 1863 1792
"DNK" 18 1863 1808
"DNK" 19 1874 1815
"DNK" 20 1906 1818
"DNK" 21 1898 1817
"DNK" 22 1869 1810
"DNK" 23 1902 1811
"DNK" 24 1878 1813
"DNK" 25 1885 1814
"DNK" 26 1893 1816
"DNK" 27 1894 1820
"DNK" 28 1903 1824
"DNK" 29 1911 1825
"DNK" 30 1849 1828
"DNK" 31 1912 1843
"DNK" 32 1926 1851
"DNK" 33 1925 1844
"DNK" 34 1913 1845
"DNK" 35 1928 1847
"DNK" 36 1933 1853
"DNK" 37 1939 1858
"DNK" 38 1947 1870
"DNK" 39 1952 1879
"DNK" 40 1957 1872
"DNK" 41 1906 1875
"DNK" 42 1949 1876
"DNK" 43 1958 1878
"DNK" 44 1945 1880
"DNK" 45 1944 1887
"DNK" 46 1961 1890
"DNK" 47 1972 1899
"DNK" 48 2000 1910
"DNK" 49 1976 1900
"DNK" 50 2022 1940
"ESP" 51 1759 1713
"ESP" 52 1758 1711
"ESP" 53 1724 1707
"ESP" 54 1788 1716
"ESP" 55 1760 1724
"ESP" 56 1781 1718
"ESP" 57 1765 1720
"ESP" 58 1746 1726
"ESP" 59 1785 1727
"ESP" 60 1785 1729
"ESP" 61 1819 1748
"ESP" 62 1819 1751
"ESP" 63 1742 1740
"ESP" 64 1742 1742
"ESP" 65 1749 1743
"ESP" 66 1801 1744
"ESP" 67 1792 1745
"ESP" 68 1777 1747
"ESP" 69 1819 1748
end
[/CODE]
Dataset 2 – country panel leb & gdppc
[
Hello, I have two datasets.
I would like to merge the individuals’ in the first dataset with the average gdppc (gdp per capita) and leb (life expectancy at birth) in dataset 2 according to the individuals’ life span in dataset 1.
For example for individual #1 in "BEL" 224 1865 1790 in first I want to add two variables with average values of leb and gdppc calculated for the interval 1790 1865.
I would like to merge the individuals in the first dataset with the average gdppc (gdp per capita) and leb (life expectancy at birth) in dataset 2 according to the individuals’ life span in dataset 1 and by country. For example, for individual #1 in "BEL" 224 1865 1790 - first dataset - I want to merge two variables with average values of leb and gdppc calculated for the interval 1790 1865 in the second dataset (country panel).
Thank you, Alberto
Dataset 1 – people ids
* Example generated by -dataex-. For more info, type help dataex
clear
input str3 iso3c int(id death_year birth_year)
"BEL" 224 1865 1790
"BEL" 225 1850 1812
"BEL" 226 1835 1778
"BEL" 227 1824 1779
"BEL" 228 1860 1781
"BEL" 229 1844 1784
"BEL" 230 1851 1785
"BEL" 231 1861 1786
"BEL" 232 1865 1790
"BEL" 233 1909 1835
"BEL" 234 1902 1836
"BEL" 235 1905 1837
"BEL" 236 1927 1840
"BEL" 237 1934 1875
"BEL" 238 1965 1876
"BEL" 239 1891 1869
"BEL" 240 1948 1870
"BEL" 241 1958 1872
"BEL" 242 1983 1901
"BEL" 243 1935 1905
"BEL" 244 2002 1916
"BEL" 245 1983 1903
"BEL" 246 2001 1906
"BEL" 247 1993 1930
"BEL" 248 2014 1928
"BEL" 249 2005 1927
"BEL" 250 . 1934
"BEL" 251 2009 1942
"BEL" 252 . 1951
"BEL" 253 . 1956
"BEL" 254 2022 1960
"DNK" 1 1766 1723
"DNK" 2 1751 1724
"DNK" 3 1796 1729
"DNK" 4 1756 1726
"DNK" 5 1808 1749
"DNK" 6 1775 1751
"DNK" 7 1813 1746
"DNK" 8 1820 1747
"DNK" 9 1831 1750
"DNK" 10 1839 1768
"DNK" 11 1852 1767
"DNK" 12 1843 1771
"DNK" 13 1848 1786
"DNK" 14 1881 1796
"DNK" 15 1850 1788
"DNK" 16 1864 1789
"DNK" 17 1863 1792
"DNK" 18 1863 1808
"DNK" 19 1874 1815
"DNK" 20 1906 1818
"DNK" 21 1898 1817
"DNK" 22 1869 1810
"DNK" 23 1902 1811
"DNK" 24 1878 1813
"DNK" 25 1885 1814
"DNK" 26 1893 1816
"DNK" 27 1894 1820
"DNK" 28 1903 1824
"DNK" 29 1911 1825
"DNK" 30 1849 1828
"DNK" 31 1912 1843
"DNK" 32 1926 1851
"DNK" 33 1925 1844
"DNK" 34 1913 1845
"DNK" 35 1928 1847
"DNK" 36 1933 1853
"DNK" 37 1939 1858
"DNK" 38 1947 1870
"DNK" 39 1952 1879
"DNK" 40 1957 1872
"DNK" 41 1906 1875
"DNK" 42 1949 1876
"DNK" 43 1958 1878
"DNK" 44 1945 1880
"DNK" 45 1944 1887
"DNK" 46 1961 1890
"DNK" 47 1972 1899
"DNK" 48 2000 1910
"DNK" 49 1976 1900
"DNK" 50 2022 1940
"ESP" 51 1759 1713
"ESP" 52 1758 1711
"ESP" 53 1724 1707
"ESP" 54 1788 1716
"ESP" 55 1760 1724
"ESP" 56 1781 1718
"ESP" 57 1765 1720
"ESP" 58 1746 1726
"ESP" 59 1785 1727
"ESP" 60 1785 1729
"ESP" 61 1819 1748
"ESP" 62 1819 1751
"ESP" 63 1742 1740
"ESP" 64 1742 1742
"ESP" 65 1749 1743
"ESP" 66 1801 1744
"ESP" 67 1792 1745
"ESP" 68 1777 1747
"ESP" 69 1819 1748
end
[/CODE]
Dataset 2 – country panel leb & gdppc
[
Code:
* Example generated by -dataex-. For more info, type help dataex clear input str8 iso3c int year double(gdp_pc_maddison leb_pop) "DNK" 1833 2130 . "BEL" 1916 6503 . "ESP" 1911 3027 39.7 "BEL" 1928 8191 57.44 "ESP" 1951 3790 63.488 "ESP" 1964 6945 70.416 "BEL" 1995 29370.088 76.907 "ESP" 2015 31847 82.981 "BEL" 1926 7626 56.89 "ESP" 1929 4173 49.43 "DNK" 1912 6076 58.01 "ESP" 1858 1774 . "ESP" 1906 2775 . "DNK" 1998 36361.23 76.245 "ESP" 1873 2428 . "ESP" 1867 1946 . "DNK" 1930 8513 62.27 "DNK" 1991 29915.447 75.045 "DNK" 1825 2107 . "ESP" 1785 1447.47 . "BEL" 1820 2358 . "DNK" 1967 18230 72.867 "BEL" 1932 7343 58.5 "ESP" 1954 4328 65.67 "ESP" 1923 3433 44.69 "BEL" 1924 7393 57.44 "DNK" 1909 5807 57.37 "ESP" 1856 1800 . "DNK" 1881 3480 48.26 "ESP" 1897 2469 . "BEL" 1973 19399 71.598 "BEL" 1891 5412 43.99 "ESP" 1931 3787 49.16 "BEL" 1868 4095 42.53 "DNK" 1933 8434 63.61 "DNK" 1888 3808 46.66 "BEL" 1966 13989 70.59 "BEL" 1864 3931 39.76 "BEL" 1848 2796 38.03 "BEL" 1967 14461 70.679 "ESP" 1973 11638 72.842 "DNK" 2003 39983.145 77.439 "DNK" 1946 9208 67.21 "DNK" 1821 2104 . "BEL" 1919 5402 49.79 "BEL" 1925 7438 57.09 "ESP" 1961 5587 69.371 "BEL" 1999 32571.674 77.672 "BEL" 1969 15969 70.903 "ESP" 1835 1679.78 . "ESP" 1971 9894 72.261 "ESP" 1925 3725 46.88 "DNK" 1944 8835 66.38 "DNK" 1948 9776 70.11 "ESP" 1895 2589 . "ESP" 1805 1501.08 . "BEL" 1949 8278 65.43 "DNK" 2005 42264.63 77.936 "ESP" 1898 2628 . "ESP" 1903 2713 . "BEL" 1842 . 38.64 "DNK" 1861 2785 47.59 "ESP" 1960 5037 68.958 "ESP" 1980 14008 75.332 "BEL" 1914 6253 . "BEL" 1984 23644 74.327 "DNK" 1956 11858 71.851 "DNK" 1951 11056 70.629 "BEL" 1858 3526 40.13 "BEL" 1920 6315 53.59 "DNK" 1863 2979 47.52 "BEL" 1959 10533 69.796 "ESP" 1894 2633 . "BEL" 1970 16914 71.046 "ESP" 1862 1932 . "DNK" 1832 2158 . "BEL" 1873 4495 43.46 "BEL" 1962 12087 70.241 "BEL" 1812 2358 . "BEL" 1909 6330 50.63 "ESP" 1870 1809 . "DNK" 1853 2697 38.52 "ESP" 1908 2917 41.33 "DNK" 1925 6978 61.91 "DNK" 2013 43733 80.171 "ESP" 1992 20329.168 77.552 "ESP" 1948 3478 61.22 "DNK" 1919 6153 57 "ESP" 1962 6083 69.749 "DNK" 1903 5244 54.75 "DNK" 1980 24272 74.363 "BEL" 1878 4689 44.19 "BEL" 2016 38766 81.139 "BEL" 1897 5716 48.8 "BEL" 1990 27412 75.862 "DNK" 1830 2120 . "DNK" 2002 39709.37 77.195 "BEL" 1955 10010 68.759 "ESP" 1953 4066 64.983 "BEL" 1983 23071 74.056 "DNK" 1868 2954 45.61 "DNK" 1826 2110 . "ESP" 1854 1804 . "DNK" 1882 3571 46.67 "ESP" 1919 3024 41.06 "ESP" 1946 3473 57.5 "DNK" 1896 4521 52.89 "BEL" 1907 6268 51.03 "BEL" 2009 36998.65 79.873 "ESP" 1975 12621 73.503 "DNK" 1870 3193 45.97 "DNK" 1995 33356.14 75.629 "ESP" 1845 1733.39 . "ESP" 1955 4442 66.318 "BEL" 1852 3067 41.78 "ESP" 1861 1932 . "ESP" 1956 4769 66.925 "DNK" 1981 24063 74.402 "ESP" 1850 1706 . "BEL" 1889 5386 45.02 "DNK" 1971 20617 73.414 "BEL" 1900 5947 46.52 "BEL" 1929 8056 55.01 "DNK" 1775 . 33 "DNK" 1913 6236 58.87 "BEL" 1921 6465 54.67 "DNK" 1901 4948 52.59 "BEL" 2015 38569 80.969 "DNK" 1923 7267 61.17 "ESP" 1993 20056.54 77.745 "BEL" 2011 38130 80.261 "BEL" 1936 7831 59.94 "ESP" 1914 2962 42.75 "DNK" 1961 14843 72.34 "ESP" 1999 25549.54 79.1 "ESP" 1875 2276 . "DNK" 2007 44481.47 78.49 "DNK" 1872 3327 47.41 "ESP" 1995 21522.098 78.175 "BEL" 1972 18336 71.397 "DNK" 1865 2989 39.78 "BEL" 1877 4597 44.45 "DNK" 2004 41178.562 77.684 "DNK" 1834 2227 . "DNK" 1958 12903 72.111 "BEL" 1883 5013 44.86 "BEL" 1750 2169 . "ESP" 1815 1536.82 . "BEL" 1911 6612 49.22 "DNK" 1875 3366 44.44 "DNK" 1952 11086 70.943 "DNK" 1843 2353 43.86 "DNK" 1986 28681 74.632 "ESP" 1863 1959 . "BEL" 1960 11081 69.973 "ESP" 1969 9307 71.746 "ESP" 1959 5085 68.509 "ESP" 1966 7881 70.991 "DNK" 1926 7329 61.67 "BEL" 1979 22094 73.015 "BEL" 1994 28706.5 76.709 "DNK" 1993 30649.537 75.303 "BEL" 1899 5828 46.45 "DNK" 2016 44836 80.583 "DNK" 1966 17789 72.747 "ESP" 1982 14045 75.934 "ESP" 1974 12388 73.162 "DNK" 1931 8542 61.84 "ESP" 1725 1429.6 . "DNK" 1894 4235 49.36 "BEL" 2018 39756.203 81.468 "BEL" 1908 6269 49.63 "BEL" 1927 7847 57.11 "ESP" 2012 30699 82.384 "ESP" 1878 2495 . "DNK" 1928 7627 61.87 "ESP" 1745 1375.99 . "BEL" 1896 5660 48.04 "DNK" 1976 23059 74.08 "BEL" 1849 2853 34.49 "DNK" 1918 5514 56.28 "ESP" 1958 5176 68.02 "DNK" 1857 2745 42.45 "BEL" 1922 7034 55.1 "BEL" 1963 12532 70.341 "DNK" 1910 5906 58.03 "BEL" 1865 3902 37.69 "ESP" 2005 30885.602 80.553 "DNK" 1860 2775 45.05 "DNK" 1855 2938 46.13 "ESP" 1967 8215 71.252 "BEL" 2012 37906 80.444 "DNK" 1947 9620 68.53 "BEL" 1918 4560 . "BEL" 1700 2192 . "ESP" 1865 1865 . "BEL" 1847 2809 35.1 "DNK" 1938 9185 64.98 "BEL" 1893 5507 44.39 "BEL" 1905 6188 49.92 "ESP" 1905 2622 . "ESP" 1889 2469 . "DNK" 1985 27710 74.573 "ESP" 1985 14690 76.553 "DNK" 1987 28728 74.698 "ESP" 1926 3650 47.7 "ESP" 1877 2601 . "DNK" 1831 2101 . "DNK" 1893 4191 47.05 "DNK" 1848 2570 40.76 "DNK" 1874 3341 46.01 "BEL" 1993 27857.25 76.507 "ESP" 1868 1701 . "BEL" 1855 3301 37.42 "ESP" 1885 2493 . "ESP" 1909 2978 40.96 "BEL" 1974 20153 71.813 "BEL" 1941 6947 58.89 "ESP" 1937 2654 47.28 "DNK" 1937 9035 63.95 "BEL" 2010 37739.33 80.072 "DNK" 2015 44635 80.475 "BEL" 1857 3524 40.44 "ESP" 1950 3464 63.094 "DNK" 1905 5333 54.31 "BEL" 2002 34419.695 78.285 "DNK" 1841 2254 42.62 "DNK" 1970 20221 73.271 "DNK" 1891 4073 46.75 "ESP" 1957 4900 67.492 "DNK" 1828 2163 . "BEL" 1978 21605 72.764 "DNK" 1988 29049 74.77 "ESP" 1886 2436 . "BEL" 1923 7226 56.69 "BEL" 1915 6150 . "DNK" 1929 8089 61.93 "BEL" 2004 35740.35 78.74 "DNK" 1883 3665 48.48 "BEL" 1997 30894.283 77.292 "BEL" 1961 11561 70.121 "ESP" 2010 31786.404 81.9 "DNK" 1953 11623 71.222 "BEL" 1939 8209 60.01 "BEL" 1977 21025 72.517 "DNK" 2000 39021.176 76.712 "ESP" 1979 13681 74.982 "DNK" 1869 3092 46.08 "ESP" 1852 1785 . "ESP" 1869 1760 . "BEL" 1863 3832 41.25 "ESP" 1939 2885 47.21 "ESP" 1942 3394 52.48 "ESP" 2003 29371.865 80.041 "ESP" 1892 2719 32.1 "ESP" 1888 2475 . "BEL" 1964 13295 70.427 "DNK" 1900 4809 51.87 "DNK" 2011 43575 79.704 "ESP" 2009 31669.691 81.638 "ESP" 1795 1518.95 . "ESP" 1932 3856 51.12 "DNK" 1852 2713 43 "ESP" 1755 1429.6 . "ESP" 1996 22185.066 78.405 "DNK" 2009 42090.17 79.107 "DNK" 2010 42932.4 79.416 "ESP" 1921 3322 41.95 "DNK" 1983 25450 74.477 "BEL" 1938 7702 60.12 "BEL" 1874 4607 44.65 "BEL" 1870 4291 40.9 "ESP" 1928 3907 48.61 "ESP" 1986 15237 76.696 "ESP" 1983 14237 76.178 "DNK" 1878 3351 47.54 "DNK" 1897 4564 51.77 "ESP" 2014 30819 82.801 "ESP" 1904 2660 . "BEL" 1965 13643 70.507 "ESP" 2016 30110 83.145 "ESP" 1915 2973 42.97 "ESP" 2011 31600 82.149 "ESP" 1944 3676 56.22 "DNK" 2006 44025.484 78.204 end
I would like to merge the individuals’ in the first dataset with the average gdppc (gdp per capita) and leb (life expectancy at birth) in dataset 2 according to the individuals’ life span in dataset 1.
For example for individual #1 in "BEL" 224 1865 1790 in first I want to add two variables with average values of leb and gdppc calculated for the interval 1790 1865.
Comment