Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • Stacked bar chart

    I want to create a stacked bar chart. I have a variable with five categories. This variable is measured at three time points. I want to make a stacked bar chart where the y-axis shows the percent and the x axis the three time points. The bar at each time point should then show the percentages of the five categories contained within the variable.


    record_id time ef_fivelevels1 ef_fivelevels2 ef_fivelevels3
    1 1 . . .
    1 2 . . .
    1 3 . . .
    2 1 . . .
    2 2 . . .
    2 3 . . .
    4 1 Severe Severe Severe
    4 2 Severe Severe Severe
    4 3 Severe Severe Severe
    5 1 Normal Normal Normal
    5 2 Normal Normal Normal
    5 3 Normal Normal Normal
    6 1 Severe Severe Severe
    6 2 Severe Severe Severe
    6 3 Severe Severe Severe
    8 1 Normal Normal Normal
    8 2 Normal Normal Normal
    8 3 Normal Normal Normal
    9 1 . . .
    9 2 . . .
    9 3 . . .
    10 1 . . .
    10 2 . . .
    10 3 . . .
    11 1 . . .
    11 2 . . .
    11 3 . . .
    12 1 Moderate Moderate Moderate
    12 2 Moderate Moderate Moderate
    12 3 Moderate Moderate Moderate
    13 1 . . .
    13 2 . . .
    13 3 . . .
    14 1 . . .
    14 2 . . .
    14 3 . . .
    15 1 . . .
    15 2 . . .
    15 3 . . .
    16 1 . . .
    16 2 . . .
    16 3 . . .
    17 1 Mild Mild Mild
    17 2 Mild Mild Mild
    17 3 Mild Mild Mild
    18 1 Normal Normal Normal
    18 2 Normal Normal Normal
    18 3 Normal Normal Normal
    19 1 Hyperdynamic Hyperdynamic Hyperdynamic
    19 2 Hyperdynamic Hyperdynamic Hyperdynamic
    19 3 Hyperdynamic Hyperdynamic Hyperdynamic
    20 1 . . .
    20 2 . . .
    20 3 . . .
    21 1 Mild Mild Mild
    21 2 Mild Mild Mild
    21 3 Mild Mild Mild
    22 1 Normal Normal Normal
    22 2 Normal Normal Normal
    22 3 Normal Normal Normal
    23 1 . . .
    23 2 . . .
    23 3 . . .
    24 1 . . .
    24 2 . . .
    24 3 . . .
    25 1 Moderate Moderate Moderate
    25 2 Moderate Moderate Moderate
    25 3 Moderate Moderate Moderate
    26 1 . . .
    26 2 . . .
    26 3 . . .
    27 1 . . .
    27 2 . . .
    27 3 . . .
    28 1 . . .
    28 2 . . .
    28 3 . . .
    29 1 Severe Severe Severe
    29 2 Severe Severe Severe
    29 3 Severe Severe Severe
    30 1 . . .
    30 2 . . .
    30 3 . . .
    31 1 Normal Normal Normal
    31 2 Normal Normal Normal
    31 3 Normal Normal Normal
    32 1 Normal Normal Normal
    32 2 Normal Normal Normal
    32 3 Normal Normal Normal
    33 1 Mild Normal Normal
    33 2 Mild Normal Normal
    33 3 Mild Normal Normal
    34 1 . . .
    34 2 . . .
    34 3 . . .
    35 1 . . .
    35 2 . . .
    35 3 . . .
    36 1 Normal Severe Normal
    36 2 Normal Severe Normal
    36 3 Normal Severe Normal
    37 1 Normal Normal Normal
    37 2 Normal Normal Normal
    37 3 Normal Normal Normal
    38 1 . . .
    38 2 . . .
    38 3 . . .
    39 1 Normal Normal Normal
    39 2 Normal Normal Normal
    39 3 Normal Normal Normal
    40 1 Normal Normal Normal
    40 2 Normal Normal Normal
    40 3 Normal Normal Normal
    41 1 . . .
    41 2 . . .
    41 3 . . .
    42 1 . . .
    42 2 . . .
    42 3 . . .
    43 1 Normal Normal Normal
    43 2 Normal Normal Normal
    43 3 Normal Normal Normal
    44 1 . . .
    44 2 . . .
    44 3 . . .
    45 1 . . .
    45 2 . . .
    45 3 . . .
    46 1 Mild Mild Mild
    46 2 Mild Mild Mild
    46 3 Mild Mild Mild
    47 1 Moderate Moderate Moderate
    47 2 Moderate Moderate Moderate
    47 3 Moderate Moderate Moderate
    48 1 Severe Severe Severe
    48 2 Severe Severe Severe
    48 3 Severe Severe Severe
    49 1 . . .
    49 2 . . .
    49 3 . . .
    50 1 . . .
    50 2 . . .
    50 3 . . .
    51 1 . . .
    51 2 . . .
    51 3 . . .
    52 1 Mild Mild Mild
    52 2 Mild Mild Mild
    52 3 Mild Mild Mild
    53 1 Normal Normal Normal
    53 2 Normal Normal Normal
    53 3 Normal Normal Normal
    54 1 . . .
    54 2 . . .
    54 3 . . .
    55 1 . . .
    55 2 . . .
    55 3 . . .
    56 1 Mild Mild Mild
    56 2 Mild Mild Mild
    56 3 Mild Mild Mild
    57 1 Mild Mild Mild
    57 2 Mild Mild Mild
    57 3 Mild Mild Mild
    58 1 . . .
    58 2 . . .
    58 3 . . .
    59 1 Normal Normal Normal
    59 2 Normal Normal Normal
    59 3 Normal Normal Normal
    60 1 . . .
    60 2 . . .
    60 3 . . .
    61 1 . . .
    61 2 . . .
    61 3 . . .
    62 1 Normal Normal Normal
    62 2 Normal Normal Normal
    62 3 Normal Normal Normal
    63 1 . . .
    63 2 . . .
    63 3 . . .
    64 1 . . .
    64 2 . . .
    64 3 . . .
    65 1 Normal Normal Normal
    65 2 Normal Normal Normal
    65 3 Normal Normal Normal
    66 1 . . .
    66 2 . . .
    66 3 . . .
    67 1 Moderate Moderate Mild
    67 2 Moderate Moderate Mild
    67 3 Moderate Moderate Mild
    68 1 Normal Normal Normal
    68 2 Normal Normal Normal
    68 3 Normal Normal Normal
    69 1 . . .
    69 2 . . .
    69 3 . . .
    70 1 . . .
    70 2 . . .
    70 3 . . .
    71 1 Mild Mild Mild
    71 2 Mild Mild Mild
    71 3 Mild Mild Mild
    72 1 Normal Normal Normal
    72 2 Normal Normal Normal
    72 3 Normal Normal Normal
    73 1 . . .
    73 2 . . .
    73 3 . . .
    74 1 Severe Severe Severe
    74 2 Severe Severe Severe
    74 3 Severe Severe Severe
    75 1 Severe Severe Severe
    75 2 Severe Severe Severe
    75 3 Severe Severe Severe
    76 1 Moderate Moderate Moderate
    76 2 Moderate Moderate Moderate
    76 3 Moderate Moderate Moderate
    77 1 . . .
    77 2 . . .
    77 3 . . .
    78 1 . . .
    78 2 . . .
    78 3 . . .
    79 1 . . .
    79 2 . . .
    79 3 . . .
    80 1 Severe Severe Severe
    80 2 Severe Severe Severe
    80 3 Severe Severe Severe
    81 1 Moderate Moderate Moderate
    81 2 Moderate Moderate Moderate
    81 3 Moderate Moderate Moderate
    82 1 Moderate Moderate Moderate
    82 2 Moderate Moderate Moderate
    82 3 Moderate Moderate Moderate
    83 1 . . .
    83 2 . . .
    83 3 . . .
    84 1 . . .
    84 2 . . .
    84 3 . . .
    85 1 . . .
    85 2 . . .
    85 3 . . .
    86 1 . . .
    86 2 . . .
    86 3 . . .
    87 1 . . .
    87 2 . . .
    87 3 . . .
    88 1 Normal Normal Normal
    88 2 Normal Normal Normal
    88 3 Normal Normal Normal
    89 1 Mild Moderate Mild
    89 2 Mild Moderate Mild
    89 3 Mild Moderate Mild
    90 1 Normal Normal Normal
    90 2 Normal Normal Normal
    90 3 Normal Normal Normal
    91 1 Severe Severe Severe
    91 2 Severe Severe Severe
    91 3 Severe Severe Severe
    92 1 . . .
    92 2 . . .
    92 3 . . .
    93 1 . . .
    93 2 . . .
    93 3 . . .
    94 1 Normal Normal Normal
    94 2 Normal Normal Normal
    94 3 Normal Normal Normal
    95 1 Normal Normal Normal
    95 2 Normal Normal Normal
    95 3 Normal Normal Normal
    96 1 . . .
    96 2 . . .
    96 3 . . .
    97 1 . . .
    97 2 . . .
    97 3 . . .
    98 1 Normal Normal Normal
    98 2 Normal Normal Normal
    98 3 Normal Normal Normal
    99 1 . . .
    99 2 . . .
    99 3 . . .
    100 1 Moderate Moderate Moderate
    100 2 Moderate Moderate Moderate
    100 3 Moderate Moderate Moderate
    101 1 . . .
    101 2 . . .
    101 3 . . .
    102 1 . . .
    102 2 . . .
    102 3 . . .
    103 1 Mild Mild Mild
    103 2 Mild Mild Mild
    103 3 Mild Mild Mild
    104 1 . . .
    104 2 . . .
    104 3 . . .
    105 1 Severe Severe Severe
    105 2 Severe Severe Severe
    105 3 Severe Severe Severe
    106 1 Normal Normal Normal
    106 2 Normal Normal Normal
    106 3 Normal Normal Normal
    107 1 Severe Severe Severe
    107 2 Severe Severe Severe
    107 3 Severe Severe Severe
    108 1 Normal Normal Normal
    108 2 Normal Normal Normal
    108 3 Normal Normal Normal
    109 1 . . .
    109 2 . . .
    109 3 . . .
    110 1 Severe Severe Severe
    110 2 Severe Severe Severe
    110 3 Severe Severe Severe
    111 1 . . .
    111 2 . . .
    111 3 . . .
    112 1 . . .
    112 2 . . .
    112 3 . . .
    113 1 . . .
    113 2 . . .
    113 3 . . .
    114 1 Normal Normal Normal
    114 2 Normal Normal Normal
    114 3 Normal Normal Normal
    115 1 Mild Mild Mild
    115 2 Mild Mild Mild
    115 3 Mild Mild Mild
    116 1 . . .
    116 2 . . .
    116 3 . . .
    117 1 Normal Normal Normal
    117 2 Normal Normal Normal
    117 3 Normal Normal Normal
    118 1 . . .
    118 2 . . .
    118 3 . . .
    119 1 . . .
    119 2 . . .
    119 3 . . .
    120 1 Normal Normal Normal
    120 2 Normal Normal Normal
    120 3 Normal Normal Normal
    121 1 . . .
    121 2 . . .
    121 3 . . .
    122 1 . . .
    122 2 . . .
    122 3 . . .
    123 1 Hyperdynamic Hyperdynamic Hyperdynamic
    123 2 Hyperdynamic Hyperdynamic Hyperdynamic
    123 3 Hyperdynamic Hyperdynamic Hyperdynamic
    124 1 Normal Normal Normal
    124 2 Normal Normal Normal
    124 3 Normal Normal Normal
    125 1 . . .
    125 2 . . .
    125 3 . . .
    126 1 Mild Mild Mild
    126 2 Mild Mild Mild
    126 3 Mild Mild Mild
    127 1 . . .
    127 2 . . .
    127 3 . . .
    128 1 . . .
    128 2 . . .
    128 3 . . .
    129 1 Moderate Moderate Moderate
    129 2 Moderate Moderate Moderate
    129 3 Moderate Moderate Moderate
    130 1 Normal Normal Normal
    130 2 Normal Normal Normal
    130 3 Normal Normal Normal
    131 1 . . .
    131 2 . . .
    131 3 . . .
    132 1 Moderate Moderate Moderate
    132 2 Moderate Moderate Moderate
    132 3 Moderate Moderate Moderate
    134 1 Normal Normal Normal
    134 2 Normal Normal Normal
    134 3 Normal Normal Normal
    135 1 Normal Normal Normal
    135 2 Normal Normal Normal
    135 3 Normal Normal Normal
    136 1 Normal Normal Normal
    136 2 Normal Normal Normal
    136 3 Normal Normal Normal
    137 1 . . .
    137 2 . . .
    137 3 . . .
    138 1 Mild Mild Mild
    138 2 Mild Mild Mild
    138 3 Mild Mild Mild
    139 1 . . .
    139 2 . . .
    139 3 . . .
    140 1 . . .
    140 2 . . .
    140 3 . . .
    141 1 Normal Normal Normal
    141 2 Normal Normal Normal
    141 3 Normal Normal Normal
    142 1 Normal Normal Normal
    142 2 Normal Normal Normal
    142 3 Normal Normal Normal
    143 1 . . .
    143 2 . . .
    143 3 . . .
    144 1 . . .
    144 2 . . .
    144 3 . . .
    145 1 Mild Mild Mild
    145 2 Mild Mild Mild
    145 3 Mild Mild Mild
    146 1 . . .
    146 2 . . .
    146 3 . . .
    148 1 . . .
    148 2 . . .
    148 3 . . .
    149 1 Normal Normal Normal
    149 2 Normal Normal Normal
    149 3 Normal Normal Normal
    150 1 . . .
    150 2 . . .
    150 3 . . .
    151 1 . . .
    151 2 . . .
    151 3 . . .
    152 1 Normal Normal Normal
    152 2 Normal Normal Normal
    152 3 Normal Normal Normal
    153 1 Severe Severe Severe
    153 2 Severe Severe Severe
    153 3 Severe Severe Severe
    154 1 . . .
    154 2 . . .
    154 3 . . .
    155 1 Normal Normal Normal
    155 2 Normal Normal Normal
    155 3 Normal Normal Normal
    156 1 . . .
    156 2 . . .
    156 3 . . .
    157 1 . . .
    157 2 . . .
    157 3 . . .
    158 1 Mild Mild Mild
    158 2 Mild Mild Mild
    158 3 Mild Mild Mild
    159 1 Normal Normal Normal
    159 2 Normal Normal Normal
    159 3 Normal Normal Normal
    160 1 . . .
    160 2 . . .
    160 3 . . .
    161 1 . . .
    161 2 . . .
    161 3 . . .
    162 1 Mild Mild Mild
    162 2 Mild Mild Mild
    162 3 Mild Mild Mild
    163 1 Normal Normal Normal
    163 2 Normal Normal Normal
    163 3 Normal Normal Normal
    164 1 . . .
    164 2 . . .
    164 3 . . .
    165 1 Normal Normal Normal
    165 2 Normal Normal Normal
    165 3 Normal Normal Normal
    166 1 . . .
    166 2 . . .
    166 3 . . .
    167 1 Mild Mild Mild
    167 2 Mild Mild Mild
    167 3 Mild Mild Mild
    168 1 . . .
    168 2 . . .
    168 3 . . .
    169 1 Normal Normal Normal
    169 2 Normal Normal Normal
    169 3 Normal Normal Normal
    170 1 . . .
    170 2 . . .
    170 3 . . .
    171 1 . . .
    171 2 . . .
    171 3 . . .
    172 1 . . .
    172 2 . . .
    172 3 . . .
    173 1 Moderate Moderate Moderate
    173 2 Moderate Moderate Moderate
    173 3 Moderate Moderate Moderate
    174 1 Moderate Moderate Moderate
    174 2 Moderate Moderate Moderate
    174 3 Moderate Moderate Moderate
    175 1 Mild Mild Mild
    175 2 Mild Mild Mild
    175 3 Mild Mild Mild
    176 1 . . .
    176 2 . . .
    176 3 . . .
    177 1 Mild Mild Mild
    177 2 Mild Mild Mild
    177 3 Mild Mild Mild
    178 1 . . .
    178 2 . . .
    178 3 . . .
    179 1 Severe Severe Severe
    179 2 Severe Severe Severe
    179 3 Severe Severe Severe
    180 1 Normal Normal Normal
    180 2 Normal Normal Normal
    180 3 Normal Normal Normal
    181 1 . . .
    181 2 . . .
    181 3 . . .
    182 1 . . .
    182 2 . . .
    182 3 . . .
    183 1 . . .
    183 2 . . .
    183 3 . . .
    184 1 Normal Normal Normal
    184 2 Normal Normal Normal
    184 3 Normal Normal Normal
    185 1 Mild Mild Mild
    185 2 Mild Mild Mild
    185 3 Mild Mild Mild
    186 1 . . .
    186 2 . . .
    186 3 . . .
    187 1 Normal Normal Normal
    187 2 Normal Normal Normal
    187 3 Normal Normal Normal
    188 1 . . .
    188 2 . . .
    188 3 . . .
    189 1 . . .
    189 2 . . .
    189 3 . . .
    190 1 Moderate Mild Mild
    190 2 Moderate Mild Mild
    190 3 Moderate Mild Mild
    191 1 Normal Normal Normal
    191 2 Normal Normal Normal
    191 3 Normal Normal Normal
    192 1 Mild Mild Mild
    192 2 Mild Mild Mild
    192 3 Mild Mild Mild
    193 1 . . .
    193 2 . . .
    193 3 . . .
    194 1 . . .
    194 2 . . .
    194 3 . . .
    195 1 Normal Normal Normal
    195 2 Normal Normal Normal
    195 3 Normal Normal Normal
    196 1 . . .
    196 2 . . .
    196 3 . . .
    197 1 Moderate Moderate Mild
    197 2 Moderate Moderate Mild
    197 3 Moderate Moderate Mild
    198 1 . . .
    198 2 . . .
    198 3 . . .
    199 1 . . .
    199 2 . . .
    199 3 . . .
    200 1 Moderate Moderate Moderate
    200 2 Moderate Moderate Moderate
    200 3 Moderate Moderate Moderate
    201 1 . . .
    201 2 . . .
    201 3 . . .
    202 1 Normal Normal Normal
    202 2 Normal Normal Normal
    202 3 Normal Normal Normal
    203 1 Severe Severe Severe
    203 2 Severe Severe Severe
    203 3 Severe Severe Severe
    204 1 . . .
    204 2 . . .
    204 3 . . .
    205 1 Normal Normal Normal
    205 2 Normal Normal Normal
    205 3 Normal Normal Normal
    206 1 . . .
    206 2 . . .
    206 3 . . .

    It should look like this:


  • #2
    You have three variables each recording one of 5 categories at 3 time points, so your set-up doesn't seem analogous to the graph you show.

    You didn't use dataex, despite our explicit request (FAQ Advice #12). So, your data need surgery before they are useful. The observations with missing values are presumably useless. Please confirm that I got the order right here.

    Code:
    * Example generated by -dataex-. For more info, type help dataex
    clear
    input int record_id byte time str12(ef_fivelevels1 ef_fivelevels2 ef_fivelevels3)
      4 1 "Severe"       "Severe"       "Severe"      
      4 2 "Severe"       "Severe"       "Severe"      
      4 3 "Severe"       "Severe"       "Severe"      
      5 1 "Normal"       "Normal"       "Normal"      
      5 2 "Normal"       "Normal"       "Normal"      
      5 3 "Normal"       "Normal"       "Normal"      
      6 1 "Severe"       "Severe"       "Severe"      
      6 2 "Severe"       "Severe"       "Severe"      
      6 3 "Severe"       "Severe"       "Severe"      
      8 1 "Normal"       "Normal"       "Normal"      
      8 2 "Normal"       "Normal"       "Normal"      
      8 3 "Normal"       "Normal"       "Normal"      
     12 1 "Moderate"     "Moderate"     "Moderate"    
     12 2 "Moderate"     "Moderate"     "Moderate"    
     12 3 "Moderate"     "Moderate"     "Moderate"    
     17 1 "Mild"         "Mild"         "Mild"        
     17 2 "Mild"         "Mild"         "Mild"        
     17 3 "Mild"         "Mild"         "Mild"        
     18 1 "Normal"       "Normal"       "Normal"      
     18 2 "Normal"       "Normal"       "Normal"      
     18 3 "Normal"       "Normal"       "Normal"      
     19 1 "Hyperdynamic" "Hyperdynamic" "Hyperdynamic"
     19 2 "Hyperdynamic" "Hyperdynamic" "Hyperdynamic"
     19 3 "Hyperdynamic" "Hyperdynamic" "Hyperdynamic"
     21 1 "Mild"         "Mild"         "Mild"        
     21 2 "Mild"         "Mild"         "Mild"        
     21 3 "Mild"         "Mild"         "Mild"        
     22 1 "Normal"       "Normal"       "Normal"      
     22 2 "Normal"       "Normal"       "Normal"      
     22 3 "Normal"       "Normal"       "Normal"      
     25 1 "Moderate"     "Moderate"     "Moderate"    
     25 2 "Moderate"     "Moderate"     "Moderate"    
     25 3 "Moderate"     "Moderate"     "Moderate"    
     29 1 "Severe"       "Severe"       "Severe"      
     29 2 "Severe"       "Severe"       "Severe"      
     29 3 "Severe"       "Severe"       "Severe"      
     31 1 "Normal"       "Normal"       "Normal"      
     31 2 "Normal"       "Normal"       "Normal"      
     31 3 "Normal"       "Normal"       "Normal"      
     32 1 "Normal"       "Normal"       "Normal"      
     32 2 "Normal"       "Normal"       "Normal"      
     32 3 "Normal"       "Normal"       "Normal"      
     33 1 "Mild"         "Normal"       "Normal"      
     33 2 "Mild"         "Normal"       "Normal"      
     33 3 "Mild"         "Normal"       "Normal"      
     36 1 "Normal"       "Severe"       "Normal"      
     36 2 "Normal"       "Severe"       "Normal"      
     36 3 "Normal"       "Severe"       "Normal"      
     37 1 "Normal"       "Normal"       "Normal"      
     37 2 "Normal"       "Normal"       "Normal"      
     37 3 "Normal"       "Normal"       "Normal"      
     39 1 "Normal"       "Normal"       "Normal"      
     39 2 "Normal"       "Normal"       "Normal"      
     39 3 "Normal"       "Normal"       "Normal"      
     40 1 "Normal"       "Normal"       "Normal"      
     40 2 "Normal"       "Normal"       "Normal"      
     40 3 "Normal"       "Normal"       "Normal"      
     43 1 "Normal"       "Normal"       "Normal"      
     43 2 "Normal"       "Normal"       "Normal"      
     43 3 "Normal"       "Normal"       "Normal"      
     46 1 "Mild"         "Mild"         "Mild"        
     46 2 "Mild"         "Mild"         "Mild"        
     46 3 "Mild"         "Mild"         "Mild"        
     47 1 "Moderate"     "Moderate"     "Moderate"    
     47 2 "Moderate"     "Moderate"     "Moderate"    
     47 3 "Moderate"     "Moderate"     "Moderate"    
     48 1 "Severe"       "Severe"       "Severe"      
     48 2 "Severe"       "Severe"       "Severe"      
     48 3 "Severe"       "Severe"       "Severe"      
     52 1 "Mild"         "Mild"         "Mild"        
     52 2 "Mild"         "Mild"         "Mild"        
     52 3 "Mild"         "Mild"         "Mild"        
     53 1 "Normal"       "Normal"       "Normal"      
     53 2 "Normal"       "Normal"       "Normal"      
     53 3 "Normal"       "Normal"       "Normal"      
     56 1 "Mild"         "Mild"         "Mild"        
     56 2 "Mild"         "Mild"         "Mild"        
     56 3 "Mild"         "Mild"         "Mild"        
     57 1 "Mild"         "Mild"         "Mild"        
     57 2 "Mild"         "Mild"         "Mild"        
     57 3 "Mild"         "Mild"         "Mild"        
     59 1 "Normal"       "Normal"       "Normal"      
     59 2 "Normal"       "Normal"       "Normal"      
     59 3 "Normal"       "Normal"       "Normal"      
     62 1 "Normal"       "Normal"       "Normal"      
     62 2 "Normal"       "Normal"       "Normal"      
     62 3 "Normal"       "Normal"       "Normal"      
     65 1 "Normal"       "Normal"       "Normal"      
     65 2 "Normal"       "Normal"       "Normal"      
     65 3 "Normal"       "Normal"       "Normal"      
     67 1 "Moderate"     "Moderate"     "Mild"        
     67 2 "Moderate"     "Moderate"     "Mild"        
     67 3 "Moderate"     "Moderate"     "Mild"        
     68 1 "Normal"       "Normal"       "Normal"      
     68 2 "Normal"       "Normal"       "Normal"      
     68 3 "Normal"       "Normal"       "Normal"      
     71 1 "Mild"         "Mild"         "Mild"        
     71 2 "Mild"         "Mild"         "Mild"        
     71 3 "Mild"         "Mild"         "Mild"        
     72 1 "Normal"       "Normal"       "Normal"      
     72 2 "Normal"       "Normal"       "Normal"      
     72 3 "Normal"       "Normal"       "Normal"      
     74 1 "Severe"       "Severe"       "Severe"      
     74 2 "Severe"       "Severe"       "Severe"      
     74 3 "Severe"       "Severe"       "Severe"      
     75 1 "Severe"       "Severe"       "Severe"      
     75 2 "Severe"       "Severe"       "Severe"      
     75 3 "Severe"       "Severe"       "Severe"      
     76 1 "Moderate"     "Moderate"     "Moderate"    
     76 2 "Moderate"     "Moderate"     "Moderate"    
     76 3 "Moderate"     "Moderate"     "Moderate"    
     80 1 "Severe"       "Severe"       "Severe"      
     80 2 "Severe"       "Severe"       "Severe"      
     80 3 "Severe"       "Severe"       "Severe"      
     81 1 "Moderate"     "Moderate"     "Moderate"    
     81 2 "Moderate"     "Moderate"     "Moderate"    
     81 3 "Moderate"     "Moderate"     "Moderate"    
     82 1 "Moderate"     "Moderate"     "Moderate"    
     82 2 "Moderate"     "Moderate"     "Moderate"    
     82 3 "Moderate"     "Moderate"     "Moderate"    
     88 1 "Normal"       "Normal"       "Normal"      
     88 2 "Normal"       "Normal"       "Normal"      
     88 3 "Normal"       "Normal"       "Normal"      
     89 1 "Mild"         "Moderate"     "Mild"        
     89 2 "Mild"         "Moderate"     "Mild"        
     89 3 "Mild"         "Moderate"     "Mild"        
     90 1 "Normal"       "Normal"       "Normal"      
     90 2 "Normal"       "Normal"       "Normal"      
     90 3 "Normal"       "Normal"       "Normal"      
     91 1 "Severe"       "Severe"       "Severe"      
     91 2 "Severe"       "Severe"       "Severe"      
     91 3 "Severe"       "Severe"       "Severe"      
     94 1 "Normal"       "Normal"       "Normal"      
     94 2 "Normal"       "Normal"       "Normal"      
     94 3 "Normal"       "Normal"       "Normal"      
     95 1 "Normal"       "Normal"       "Normal"      
     95 2 "Normal"       "Normal"       "Normal"      
     95 3 "Normal"       "Normal"       "Normal"      
     98 1 "Normal"       "Normal"       "Normal"      
     98 2 "Normal"       "Normal"       "Normal"      
     98 3 "Normal"       "Normal"       "Normal"      
    100 1 "Moderate"     "Moderate"     "Moderate"    
    100 2 "Moderate"     "Moderate"     "Moderate"    
    100 3 "Moderate"     "Moderate"     "Moderate"    
    103 1 "Mild"         "Mild"         "Mild"        
    103 2 "Mild"         "Mild"         "Mild"        
    103 3 "Mild"         "Mild"         "Mild"        
    105 1 "Severe"       "Severe"       "Severe"      
    105 2 "Severe"       "Severe"       "Severe"      
    105 3 "Severe"       "Severe"       "Severe"      
    106 1 "Normal"       "Normal"       "Normal"      
    106 2 "Normal"       "Normal"       "Normal"      
    106 3 "Normal"       "Normal"       "Normal"      
    107 1 "Severe"       "Severe"       "Severe"      
    107 2 "Severe"       "Severe"       "Severe"      
    107 3 "Severe"       "Severe"       "Severe"      
    108 1 "Normal"       "Normal"       "Normal"      
    108 2 "Normal"       "Normal"       "Normal"      
    108 3 "Normal"       "Normal"       "Normal"      
    110 1 "Severe"       "Severe"       "Severe"      
    110 2 "Severe"       "Severe"       "Severe"      
    110 3 "Severe"       "Severe"       "Severe"      
    114 1 "Normal"       "Normal"       "Normal"      
    114 2 "Normal"       "Normal"       "Normal"      
    114 3 "Normal"       "Normal"       "Normal"      
    115 1 "Mild"         "Mild"         "Mild"        
    115 2 "Mild"         "Mild"         "Mild"        
    115 3 "Mild"         "Mild"         "Mild"        
    117 1 "Normal"       "Normal"       "Normal"      
    117 2 "Normal"       "Normal"       "Normal"      
    117 3 "Normal"       "Normal"       "Normal"      
    120 1 "Normal"       "Normal"       "Normal"      
    120 2 "Normal"       "Normal"       "Normal"      
    120 3 "Normal"       "Normal"       "Normal"      
    123 1 "Hyperdynamic" "Hyperdynamic" "Hyperdynamic"
    123 2 "Hyperdynamic" "Hyperdynamic" "Hyperdynamic"
    123 3 "Hyperdynamic" "Hyperdynamic" "Hyperdynamic"
    124 1 "Normal"       "Normal"       "Normal"      
    124 2 "Normal"       "Normal"       "Normal"      
    124 3 "Normal"       "Normal"       "Normal"      
    126 1 "Mild"         "Mild"         "Mild"        
    126 2 "Mild"         "Mild"         "Mild"        
    126 3 "Mild"         "Mild"         "Mild"        
    129 1 "Moderate"     "Moderate"     "Moderate"    
    129 2 "Moderate"     "Moderate"     "Moderate"    
    129 3 "Moderate"     "Moderate"     "Moderate"    
    130 1 "Normal"       "Normal"       "Normal"      
    130 2 "Normal"       "Normal"       "Normal"      
    130 3 "Normal"       "Normal"       "Normal"      
    132 1 "Moderate"     "Moderate"     "Moderate"    
    132 2 "Moderate"     "Moderate"     "Moderate"    
    132 3 "Moderate"     "Moderate"     "Moderate"    
    134 1 "Normal"       "Normal"       "Normal"      
    134 2 "Normal"       "Normal"       "Normal"      
    134 3 "Normal"       "Normal"       "Normal"      
    135 1 "Normal"       "Normal"       "Normal"      
    135 2 "Normal"       "Normal"       "Normal"      
    135 3 "Normal"       "Normal"       "Normal"      
    136 1 "Normal"       "Normal"       "Normal"      
    136 2 "Normal"       "Normal"       "Normal"      
    136 3 "Normal"       "Normal"       "Normal"      
    138 1 "Mild"         "Mild"         "Mild"        
    138 2 "Mild"         "Mild"         "Mild"        
    138 3 "Mild"         "Mild"         "Mild"        
    141 1 "Normal"       "Normal"       "Normal"      
    141 2 "Normal"       "Normal"       "Normal"      
    141 3 "Normal"       "Normal"       "Normal"      
    142 1 "Normal"       "Normal"       "Normal"      
    142 2 "Normal"       "Normal"       "Normal"      
    142 3 "Normal"       "Normal"       "Normal"      
    145 1 "Mild"         "Mild"         "Mild"        
    145 2 "Mild"         "Mild"         "Mild"        
    145 3 "Mild"         "Mild"         "Mild"        
    149 1 "Normal"       "Normal"       "Normal"      
    149 2 "Normal"       "Normal"       "Normal"      
    149 3 "Normal"       "Normal"       "Normal"      
    152 1 "Normal"       "Normal"       "Normal"      
    152 2 "Normal"       "Normal"       "Normal"      
    152 3 "Normal"       "Normal"       "Normal"      
    153 1 "Severe"       "Severe"       "Severe"      
    153 2 "Severe"       "Severe"       "Severe"      
    153 3 "Severe"       "Severe"       "Severe"      
    155 1 "Normal"       "Normal"       "Normal"      
    155 2 "Normal"       "Normal"       "Normal"      
    155 3 "Normal"       "Normal"       "Normal"      
    158 1 "Mild"         "Mild"         "Mild"        
    158 2 "Mild"         "Mild"         "Mild"        
    158 3 "Mild"         "Mild"         "Mild"        
    159 1 "Normal"       "Normal"       "Normal"      
    159 2 "Normal"       "Normal"       "Normal"      
    159 3 "Normal"       "Normal"       "Normal"      
    162 1 "Mild"         "Mild"         "Mild"        
    162 2 "Mild"         "Mild"         "Mild"        
    162 3 "Mild"         "Mild"         "Mild"        
    163 1 "Normal"       "Normal"       "Normal"      
    163 2 "Normal"       "Normal"       "Normal"      
    163 3 "Normal"       "Normal"       "Normal"      
    165 1 "Normal"       "Normal"       "Normal"      
    165 2 "Normal"       "Normal"       "Normal"      
    165 3 "Normal"       "Normal"       "Normal"      
    167 1 "Mild"         "Mild"         "Mild"        
    167 2 "Mild"         "Mild"         "Mild"        
    167 3 "Mild"         "Mild"         "Mild"        
    169 1 "Normal"       "Normal"       "Normal"      
    169 2 "Normal"       "Normal"       "Normal"      
    169 3 "Normal"       "Normal"       "Normal"      
    173 1 "Moderate"     "Moderate"     "Moderate"    
    173 2 "Moderate"     "Moderate"     "Moderate"    
    173 3 "Moderate"     "Moderate"     "Moderate"    
    174 1 "Moderate"     "Moderate"     "Moderate"    
    174 2 "Moderate"     "Moderate"     "Moderate"    
    174 3 "Moderate"     "Moderate"     "Moderate"    
    175 1 "Mild"         "Mild"         "Mild"        
    175 2 "Mild"         "Mild"         "Mild"        
    175 3 "Mild"         "Mild"         "Mild"        
    177 1 "Mild"         "Mild"         "Mild"        
    177 2 "Mild"         "Mild"         "Mild"        
    177 3 "Mild"         "Mild"         "Mild"        
    179 1 "Severe"       "Severe"       "Severe"      
    179 2 "Severe"       "Severe"       "Severe"      
    179 3 "Severe"       "Severe"       "Severe"      
    180 1 "Normal"       "Normal"       "Normal"      
    180 2 "Normal"       "Normal"       "Normal"      
    180 3 "Normal"       "Normal"       "Normal"      
    184 1 "Normal"       "Normal"       "Normal"      
    184 2 "Normal"       "Normal"       "Normal"      
    184 3 "Normal"       "Normal"       "Normal"      
    185 1 "Mild"         "Mild"         "Mild"        
    185 2 "Mild"         "Mild"         "Mild"        
    185 3 "Mild"         "Mild"         "Mild"        
    187 1 "Normal"       "Normal"       "Normal"      
    187 2 "Normal"       "Normal"       "Normal"      
    187 3 "Normal"       "Normal"       "Normal"      
    190 1 "Moderate"     "Mild"         "Mild"        
    190 2 "Moderate"     "Mild"         "Mild"        
    190 3 "Moderate"     "Mild"         "Mild"        
    191 1 "Normal"       "Normal"       "Normal"      
    191 2 "Normal"       "Normal"       "Normal"      
    191 3 "Normal"       "Normal"       "Normal"      
    192 1 "Mild"         "Mild"         "Mild"        
    192 2 "Mild"         "Mild"         "Mild"        
    192 3 "Mild"         "Mild"         "Mild"        
    195 1 "Normal"       "Normal"       "Normal"      
    195 2 "Normal"       "Normal"       "Normal"      
    195 3 "Normal"       "Normal"       "Normal"      
    197 1 "Moderate"     "Moderate"     "Mild"        
    197 2 "Moderate"     "Moderate"     "Mild"        
    197 3 "Moderate"     "Moderate"     "Mild"        
    200 1 "Moderate"     "Moderate"     "Moderate"    
    200 2 "Moderate"     "Moderate"     "Moderate"    
    200 3 "Moderate"     "Moderate"     "Moderate"    
    202 1 "Normal"       "Normal"       "Normal"      
    202 2 "Normal"       "Normal"       "Normal"      
    202 3 "Normal"       "Normal"       "Normal"      
    203 1 "Severe"       "Severe"       "Severe"      
    203 2 "Severe"       "Severe"       "Severe"      
    203 3 "Severe"       "Severe"       "Severe"      
    205 1 "Normal"       "Normal"       "Normal"      
    205 2 "Normal"       "Normal"       "Normal"      
    205 3 "Normal"       "Normal"       "Normal"      
    end
    
    label def grade 1 Mild 2 Moderate 3 Normal 4 Severe 5 Hyperdynamic
    
    foreach v of var ef* {
        encode `v', label(grade) gen(`v'_2)
        label var `v'_2 "`v'"
    }

    Comment


    • #3
      Hi Nick.

      Sorry for that. I've missed the FAQ #12. Here's the data again: And yes, the missing data point should not be included in the graph.

      * Example generated by -dataex-. For more info, type help dataex
      clear
      input int record_id byte(ef_fivelevels1 ef_fivelevels2 ef_fivelevels3)
      4 4 4 4
      5 1 1 1
      6 4 4 4
      8 1 1 1
      12 3 3 3
      17 2 2 2
      18 1 1 1
      19 5 5 5
      21 2 2 2
      22 1 1 1
      25 3 3 3
      29 4 4 4
      31 1 1 1
      32 1 1 1
      33 2 1 1
      36 1 4 1
      37 1 1 1
      39 1 1 1
      40 1 1 1
      43 1 1 1
      46 2 2 2
      47 3 3 3
      48 4 4 4
      52 2 2 2
      53 1 1 1
      56 2 2 2
      57 2 2 2
      59 1 1 1
      62 1 1 1
      65 1 1 1
      67 3 3 2
      68 1 1 1
      71 2 2 2
      72 1 1 1
      74 4 4 4
      75 4 4 4
      76 3 3 3
      80 4 4 4
      81 3 3 3
      82 3 3 3
      88 1 1 1
      89 2 3 2
      90 1 1 1
      91 4 4 4
      94 1 1 1
      95 1 1 1
      98 1 1 1
      100 3 3 3
      103 2 2 2
      105 4 4 4
      106 1 1 1
      107 4 4 4
      108 1 1 1
      110 4 4 4
      114 1 1 1
      115 2 2 2
      117 1 1 1
      120 1 1 1
      123 5 5 5
      124 1 1 1
      126 2 2 2
      129 3 3 3
      130 1 1 1
      132 3 3 3
      134 1 1 1
      135 1 1 1
      136 1 1 1
      138 2 2 2
      141 1 1 1
      142 1 1 1
      145 2 2 2
      149 1 1 1
      152 1 1 1
      153 4 4 4
      155 1 1 1
      158 2 2 2
      159 1 1 1
      162 2 2 2
      163 1 1 1
      165 1 1 1
      167 2 2 2
      169 1 1 1
      173 3 3 3
      174 3 3 3
      175 2 2 2
      177 2 2 2
      179 4 4 4
      180 1 1 1
      184 1 1 1
      185 2 2 2
      187 1 1 1
      190 3 2 2
      191 1 1 1
      192 2 2 2
      195 1 1 1
      197 3 3 2
      200 3 3 3
      202 1 1 1
      203 4 4 4
      205 1 1 1
      end
      label values ef_fivelevels1 ef_fivelevels3
      label values ef_fivelevels2 ef_fivelevels3
      label values ef_fivelevels3 ef_fivelevels3
      label def ef_fivelevels3 1 "Normal", modify
      label def ef_fivelevels3 2 "Mild", modify
      label def ef_fivelevels3 3 "Moderate", modify
      label def ef_fivelevels3 4 "Severe", modify
      label def ef_fivelevels3 5 "Hyperdynamic", modify
      [/CODE]

      In the meantime, I tried to reshape the data and used the graph hbar and it seems to have solved the problem.

      reshape long ef_fivelevels, i(record_id) j(time)

      graph hbar (count), over(ef_fivelevels) over(time) asyvars stack

      Click image for larger version

Name:	Figure EF.jpg
Views:	1
Size:	339.7 KB
ID:	1724254

      Comment


      • #4
        Looks like graph bar to me!

        Excellent that you made progress, although I don't follow how 3 x 5 x 3 reduces to 5 x 3.

        More interesting perhaps, compare what can be done with tabplot from the Stata Journal, particularly to show small changes and/or small proportions, which I guess carry most of the concern.

        A good way in is through

        https://www.statalist.org/forums/for...updated-on-ssc

        while the code and help come from

        Code:
        . search tabplot, sj
        Noting

        latest update

        Code:
        SJ-22-2 gr0066_3  . . . . . . . . . . . . . . . .  Software update for tabplot
                (help tabplot if installed) . . . . . . . . . . . . . . . .  N. J. Cox
                Q2/22   SJ 22(2):467
                bug fixed; help file updated to include further references
        fullest write-up

        Code:
        SJ-16-2 gr0066  . . . . . .  Speaking Stata: Multiple bar charts in table form
                (help tabplot if installed) . . . . . . . . . . . . . . . .  N. J. Cox
                Q2/16   SJ 16(2):491--510
                provides multiple bar charts in table form representing
                contingency tables for one, two, or three categorical variables


        Comment


        • #5
          Thanks for the input. However, I'm not quit sure how you get 3 x 5 x 3 to 5 x 3. The graph depicts three time point on the x-axis and each bar represent the variable with 5 categories. I will take a look at the tabplot to see if it gives a bette visualization of the data. Again, thanks for the input.

          Comment


          • #6
            You had 3 variables, 5 categories and 3 time points in #1. What’s the reasoning behind the reshape?

            Comment


            • #7
              Duplicate in error
              Last edited by Nick Cox; 18 Aug 2023, 13:24.

              Comment


              • #8
                One variable with 5 categories measured at three time slots (0, 2 and 4 h). Reshaped to show this variable at the three time slots.

                Comment


                • #9
                  In Stata terms ef_fivelevels1 ef_fivelevels2 ef_fivelevels3 amount to 3 variables, hence your statement in #1 and mine.

                  I think I understand this: the information was just duplicated originally for some reason. Any way, you got what you wanted.

                  Comment


                  • #10
                    Thx, for your feedback. The three variables, you mentioned are just the same parameter measured at the three time slots.

                    Comment

                    Working...
                    X