I have panel data from surveys administered fairly regularly. There is a uniquely annoying situation where the respondent's family member's ages were recorded in only one survey, as you can see in the data below.
My goal is to use this to extrapolate the family member ages across all other survey dates, and then use that to calculate the percent likelihood that they have what we define as a "young child" in their family, which is a child age 4 or younger. The issue, however, is that we do not have their birthdays.
My inclination is to do something like the following: if Survey A was administered 100 days before Survey B (in which we observe ages), then there is a 1-(100/365) = 73% chance they're still the same age at Survey A that they were at Survey B (assuming an equal chance of a birthday on any given day). So then try to use that to try to back out a % likelihood that they have at least one child age 4 or younger (which will most often be 0 or 1 in my full dataset, but will sometimes be a fractional percentage if they have a child right around age 4/age 5 cutoff).
Does this make sense conceptually, or is there a better way to approach this? And if anyone can wrap their head around the most efficient code to begin to execute this, I would be very appreciative.
Data here:
My goal is to use this to extrapolate the family member ages across all other survey dates, and then use that to calculate the percent likelihood that they have what we define as a "young child" in their family, which is a child age 4 or younger. The issue, however, is that we do not have their birthdays.
My inclination is to do something like the following: if Survey A was administered 100 days before Survey B (in which we observe ages), then there is a 1-(100/365) = 73% chance they're still the same age at Survey A that they were at Survey B (assuming an equal chance of a birthday on any given day). So then try to use that to try to back out a % likelihood that they have at least one child age 4 or younger (which will most often be 0 or 1 in my full dataset, but will sometimes be a fractional percentage if they have a child right around age 4/age 5 cutoff).
Does this make sense conceptually, or is there a better way to approach this? And if anyone can wrap their head around the most efficient code to begin to execute this, I would be very appreciative.
Data here:
Code:
* Example generated by -dataex-. For more info, type help dataex clear input float(new_id date) byte(new_age1 new_age2 new_age3 new_age4 new_age5 new_age6 new_age7 new_age8) 28 21768 . . . . . . . . 28 21769 . . . . . . . . 28 21770 . . . . . . . . 28 21771 . . . . . . . . 28 21772 . . . . . . . . 28 21773 . . . . . . . . 28 21774 . . . . . . . . 28 21775 . . . . . . . . 28 21776 . . . . . . . . 28 21777 . . . . . . . . 28 21778 . . . . . . . . 28 21779 . . . . . . . . 28 21781 . . . . . . . . 28 21782 . . . . . . . . 28 21783 . . . . . . . . 28 21784 . . . . . . . . 28 21785 . . . . . . . . 28 21786 . . . . . . . . 28 21787 . . . . . . . . 28 21788 . . . . . . . . 28 21789 . . . . . . . . 28 21790 . . . . . . . . 28 21791 . . . . . . . . 28 21793 . . . . . . . . 28 21794 . . . . . . . . 28 21795 . . . . . . . . 28 21796 . . . . . . . . 28 21797 . . . . . . . . 28 21798 . . . . . . . . 28 21801 . . . . . . . . 28 21963 . . . . . . . . 28 21965 . . . . . . . . 28 21966 . . . . . . . . 28 21967 . . . . . . . . 28 21968 . . . . . . . . 28 21969 . . . . . . . . 28 21970 . . . . . . . . 28 21971 . . . . . . . . 28 21972 . . . . . . . . 28 21973 . . . . . . . . 28 21977 . . . . . . . . 28 21978 . . . . . . . . 28 22116 . . . . . . . . 28 21997 . . . . . . . . 28 22053 . . . . . . . . 28 22193 . . . . . . . . 28 22195 . . . . . . . . 28 22196 . . . . . . . . 28 22197 . . . . . . . . 28 22198 . . . . . . . . 28 22199 . . . . . . . . 28 22200 . . . . . . . . 28 22201 . . . . . . . . 28 22202 . . . . . . . . 28 22203 . . . . . . . . 28 22204 . . . . . . . . 28 22205 . . . . . . . . 28 22206 . . . . . . . . 28 22207 . . . . . . . . 28 22208 . . . . . . . . 28 22209 . . . . . . . . 28 22210 . . . . . . . . 28 22211 . . . . . . . . 28 22212 . . . . . . . . 28 22213 . . . . . . . . 28 22214 . . . . . . . . 28 22215 . . . . . . . . 28 22216 . . . . . . . . 28 22217 . . . . . . . . 28 22218 . . . . . . . . 28 22219 . . . . . . . . 28 22220 . . . . . . . . 28 22221 . . . . . . . . 28 22222 . . . . . . . . 28 22223 . . . . . . . . 28 22224 . . . . . . . . 28 22225 . . . . . . . . 28 22368 18 7 6 . . . . . 28 22508 . . . . . . . . 28 22718 . . . . . . . . 29 21769 . . . . . . . . 29 21769 . . . . . . . . 29 21770 . . . . . . . . 29 21771 . . . . . . . . 29 21772 . . . . . . . . 29 21773 . . . . . . . . 29 21774 . . . . . . . . 29 21775 . . . . . . . . 29 21776 . . . . . . . . 29 21777 . . . . . . . . 29 21778 . . . . . . . . 29 21779 . . . . . . . . 29 21780 . . . . . . . . 29 21781 . . . . . . . . 29 21782 . . . . . . . . 29 21783 . . . . . . . . 29 21784 . . . . . . . . 29 21787 . . . . . . . . 29 21788 . . . . . . . . 29 21964 . . . . . . . . 29 21989 . . . . . . . . 29 21990 . . . . . . . . 29 21991 . . . . . . . . 29 21993 . . . . . . . . 29 21994 . . . . . . . . 29 21995 . . . . . . . . 29 21996 . . . . . . . . 29 21997 . . . . . . . . 29 21998 . . . . . . . . 29 21999 . . . . . . . . 29 22000 . . . . . . . . 29 22001 . . . . . . . . 29 22002 . . . . . . . . 29 22036 . . . . . . . . 29 22004 . . . . . . . . 29 22074 . . . . . . . . 29 22210 . . . . . . . . 29 22212 . . . . . . . . 29 22213 . . . . . . . . 29 22214 . . . . . . . . 29 22215 . . . . . . . . 29 22216 . . . . . . . . 29 22217 . . . . . . . . 29 22218 . . . . . . . . 29 22219 . . . . . . . . 29 22220 . . . . . . . . 29 22221 . . . . . . . . 29 22222 . . . . . . . . 29 22223 . . . . . . . . 29 22224 . . . . . . . . 29 22225 . . . . . . . . 29 22226 . . . . . . . . 29 22227 . . . . . . . . 29 22228 . . . . . . . . 29 22229 . . . . . . . . 29 22230 9 3 10 14 . . . . 29 22231 . . . . . . . . 29 22232 . . . . . . . . 29 22233 . . . . . . . . 29 22234 . . . . . . . . 29 22235 . . . . . . . . 29 22236 . . . . . . . . 29 22237 . . . . . . . . 29 22238 . . . . . . . . 29 22239 . . . . . . . . 29 22240 . . . . . . . . 29 22241 . . . . . . . . 30 21775 . . . . . . . . 30 21776 . . . . . . . . 30 21777 . . . . . . . . 30 21778 . . . . . . . . 30 21779 . . . . . . . . 30 21780 . . . . . . . . 30 21781 . . . . . . . . 30 21782 . . . . . . . . 30 21783 . . . . . . . . 30 21784 . . . . . . . . 30 21785 . . . . . . . . 30 21786 . . . . . . . . 30 21787 . . . . . . . . 30 21788 . . . . . . . . 30 21789 . . . . . . . . 30 21790 . . . . . . . . 30 21791 . . . . . . . . 30 21792 . . . . . . . . 30 21793 . . . . . . . . 30 21794 . . . . . . . . 30 21795 . . . . . . . . 30 21796 . . . . . . . . 30 21797 . . . . . . . . 30 21798 . . . . . . . . 30 21799 . . . . . . . . 30 21800 . . . . . . . . 30 21801 . . . . . . . . 30 21802 . . . . . . . . 30 21803 . . . . . . . . 30 21804 . . . . . . . . 30 21805 . . . . . . . . 30 21973 . . . . . . . . 30 21998 . . . . . . . . 30 21999 . . . . . . . . 30 22000 . . . . . . . . 30 22001 . . . . . . . . 30 22002 . . . . . . . . 30 22003 . . . . . . . . 30 22004 . . . . . . . . 30 22005 . . . . . . . . 30 22006 . . . . . . . . 30 22007 . . . . . . . . 30 22008 . . . . . . . . 30 22009 . . . . . . . . 30 22010 . . . . . . . . 30 22011 . . . . . . . . 30 22015 . . . . . . . . 30 22009 4 6 17 . . . . . 30 22207 . . . . . . . . 30 22209 . . . . . . . . 30 22210 . . . . . . . . 30 22211 . . . . . . . . 30 22212 . . . . . . . . end format %td survey_date
Comment