I'm interested in studying the role of various bank-specific and macroeconomic variables in determining stress in banks, using panel GMM estimation approach (motivated by persistence of risk in banks as per existing literature). My panel consists of 38 banks and 18 years. The variables are as follows.
Dependent Variable: Stress Scoreit or ln(Stress Scoreit)
Bank Specific Regressors: Pub_Dummy (1 for Public Sector bank, 0 for Private Sector Bank), Risk Leverage, GNPA, PCR, NIM, CorpLoan, Contingent Liabilities, Operating Efficiency, Size, RoA. (PCR and CorpLoan have been considered as predetermined variables, which are weakly exogenous)
Macroeconomic Variables: GDP Growth, Gsec Yield, Call Money Rate, Inflation, Exchange Rate, EPU Score
However on running two-step system GMM using -xtabond2, the following issues emerge.
1) All the macroeconomic variables are getting dropped due to collinearity (which is not the case, whlle using pooled OLS regression)
2) Coefficients of all bank specific variables except RoA and GNPA are coming out to be statstically insignificant at 95% confidence level (in pooled OLS regression, coefficients of all bank specific regressors except PCR, CorpLoan, Operating Efficiency and RoA are significant).
3) Hansen test p-value is coming out to be 1, which is potentially problematic (Roodman, 2009)
4) Difference-in-Hanesn statistic p-value, both for excluding group and difference, is coming out to be one, which I presume is problematic.
Kindly advise, where I'm going wrong, alternatively, how the estimation can be improved? I am new to panel GMM and have a very basic understanding of GMM estimation. The codes I have used are as follows.
1. Using StrsScore as dependent variable and other regressors/control variables at levels
2. Using StrsScore as dependent variable and other regressors/control variables at their first lag
I would greatly appreciate any suggestion.
Thanks
pankaj
Dependent Variable: Stress Scoreit or ln(Stress Scoreit)
Bank Specific Regressors: Pub_Dummy (1 for Public Sector bank, 0 for Private Sector Bank), Risk Leverage, GNPA, PCR, NIM, CorpLoan, Contingent Liabilities, Operating Efficiency, Size, RoA. (PCR and CorpLoan have been considered as predetermined variables, which are weakly exogenous)
Macroeconomic Variables: GDP Growth, Gsec Yield, Call Money Rate, Inflation, Exchange Rate, EPU Score
However on running two-step system GMM using -xtabond2, the following issues emerge.
1) All the macroeconomic variables are getting dropped due to collinearity (which is not the case, whlle using pooled OLS regression)
2) Coefficients of all bank specific variables except RoA and GNPA are coming out to be statstically insignificant at 95% confidence level (in pooled OLS regression, coefficients of all bank specific regressors except PCR, CorpLoan, Operating Efficiency and RoA are significant).
3) Hansen test p-value is coming out to be 1, which is potentially problematic (Roodman, 2009)
4) Difference-in-Hanesn statistic p-value, both for excluding group and difference, is coming out to be one, which I presume is problematic.
Kindly advise, where I'm going wrong, alternatively, how the estimation can be improved? I am new to panel GMM and have a very basic understanding of GMM estimation. The codes I have used are as follows.
1. Using StrsScore as dependent variable and other regressors/control variables at levels
Code:
. xtabond2 StrsScore L.StrsScore Pub_Dummy CRAR RiskLev GNPA PCR NIM CorpLoan ContLiab OpEff Size ROA GDPGr GsecYld CM > R EPUInd CPInfl ExcUSD i.Year,gmmstyle(L.StrsScore PCR CorpLoan L.RiskLev L.GNPA L.NIM L.ContLiab L.OpEff L.Size L.R > OA L.EPUInd, collapse) ivstyle(i.Year Pub_Dummy GDPGr GsecYld CMR CPInfl ExcUSD, equation(level)) twostep robust sma > ll orthogonal Favoring speed over space. To switch, type or click on mata: mata set matafavor space, perm. GDPGr dropped due to collinearity GsecYld dropped due to collinearity CMR dropped due to collinearity EPUInd dropped due to collinearity CPInfl dropped due to collinearity ExcUSD dropped due to collinearity 2005b.Year dropped due to collinearity 2019.Year dropped due to collinearity Warning: Number of instruments may be large relative to number of observations. Warning: Two-step estimated covariance matrix of moments is singular. Using a generalized inverse to calculate optimal weighting matrix for two-step estimation. Difference-in-Sargan/Hansen statistics may be negative. Dynamic panel-data estimation, two-step system GMM ------------------------------------------------------------------------------ Group variable: BankID Number of obs = 640 Time variable : Year Number of groups = 39 Number of instruments = 195 Obs per group: min = 14 F(28, 38) = 11.92 avg = 16.41 Prob > F = 0.000 max = 17 ------------------------------------------------------------------------------ | Corrected StrsScore | Coefficient std. err. t P>|t| [95% conf. interval] -------------+---------------------------------------------------------------- StrsScore | L1. | 1.007106 .0290447 34.67 0.000 .948308 1.065904 | Pub_Dummy | -38.60584 269.8552 -0.14 0.887 -584.8992 507.6875 CRAR | 6232.027 8747.618 0.71 0.481 -11476.6 23940.65 RiskLev | -2016.494 4204.734 -0.48 0.634 -10528.53 6495.545 GNPA | 1936.759 869.6131 2.23 0.032 176.3191 3697.199 PCR | 353.2481 441.8018 0.80 0.429 -541.1329 1247.629 NIM | 4897.158 27923.87 0.18 0.862 -51631.76 61426.08 CorpLoan | -4264.571 3052.743 -1.40 0.171 -10444.53 1915.383 ContLiab | -42.89541 52.97098 -0.81 0.423 -150.1296 64.33873 OpEff | -19178.99 26349.87 -0.73 0.471 -72521.51 34163.53 Size | 156.5269 101.4404 1.54 0.131 -48.82837 361.8821 ROA | 12847.05 4647.584 2.76 0.009 3438.505 22255.59 | Year | 2006 | 154.515 241.632 0.64 0.526 -334.6435 643.6735 2007 | 109.6037 222.2718 0.49 0.625 -340.3621 559.5694 2008 | 21.27166 200.1552 0.11 0.916 -383.9214 426.4647 2009 | -30.94667 157.4384 -0.20 0.845 -349.664 287.7707 2010 | -159.2775 165.7282 -0.96 0.343 -494.7768 176.2217 2011 | -99.53624 189.7621 -0.52 0.603 -483.6896 284.6171 2012 | -67.23581 134.552 -0.50 0.620 -339.6221 205.1504 2013 | -19.35655 94.8411 -0.20 0.839 -211.3523 172.6392 2014 | 3.22885 113.5994 0.03 0.977 -226.7412 233.1989 2015 | -101.7981 181.5714 -0.56 0.578 -469.3702 265.774 2016 | -216.9991 80.92474 -2.68 0.011 -380.8227 -53.17556 2017 | -233.4362 95.06184 -2.46 0.019 -425.8789 -40.9936 2018 | -176.8919 65.95511 -2.68 0.011 -310.411 -43.37278 2020 | -245.7197 65.1777 -3.77 0.001 -377.6651 -113.7744 2021 | -174.6449 169.9768 -1.03 0.311 -518.7449 169.4552 2022 | -248.8271 105.2501 -2.36 0.023 -461.8948 -35.75938 | _cons | 118.1285 626.1587 0.19 0.851 -1149.464 1385.72 ------------------------------------------------------------------------------ Instruments for orthogonal deviations equation GMM-type (missing=0, separate instruments for each period unless collapsed) L(1/17).(L.StrsScore PCR CorpLoan L.RiskLev L.GNPA L.NIM L.ContLiab L.OpEff L.Size L.ROA L.EPUInd) collapsed Instruments for levels equation Standard 2005b.Year 2006.Year 2007.Year 2008.Year 2009.Year 2010.Year 2011.Year 2012.Year 2013.Year 2014.Year 2015.Year 2016.Year 2017.Year 2018.Year 2019.Year 2020.Year 2021.Year 2022.Year Pub_Dummy GDPGr GsecYld CMR CPInfl ExcUSD _cons GMM-type (missing=0, separate instruments for each period unless collapsed) D.(L.StrsScore PCR CorpLoan L.RiskLev L.GNPA L.NIM L.ContLiab L.OpEff L.Size L.ROA L.EPUInd) collapsed ------------------------------------------------------------------------------ Arellano-Bond test for AR(1) in first differences: z = -1.98 Pr > z = 0.047 Arellano-Bond test for AR(2) in first differences: z = 0.14 Pr > z = 0.889 ------------------------------------------------------------------------------ Sargan test of overid. restrictions: chi2(166) = 274.95 Prob > chi2 = 0.000 (Not robust, but not weakened by many instruments.) Hansen test of overid. restrictions: chi2(166) = 18.86 Prob > chi2 = 1.000 (Robust, but weakened by many instruments.) Difference-in-Hansen tests of exogeneity of instrument subsets: GMM instruments for levels Hansen test excluding group: chi2(155) = 19.32 Prob > chi2 = 1.000 Difference (null H = exogenous): chi2(11) = -0.46 Prob > chi2 = 1.000 iv(2005b.Year 2006.Year 2007.Year 2008.Year 2009.Year 2010.Year 2011.Year 2012.Year 2013.Year 2014.Year 2015.Year 20 > 16.Year 2017.Year 2018.Year 2019.Year 2020.Year 2021.Year 2022.Year Pub_Dummy GDPGr GsecYld CMR CPInfl ExcUSD, eq(le > vel)) Hansen test excluding group: chi2(160) = 20.72 Prob > chi2 = 1.000 Difference (null H = exogenous): chi2(6) = -1.85 Prob > chi2 = 1.000
2. Using StrsScore as dependent variable and other regressors/control variables at their first lag
Code:
. xtabond2 StrsScore L.StrsScore L.(Pub_Dummy CRAR RiskLev GNPA PCR NIM CorpLoan ContLiab OpEff Size ROA GDPGr GsecYld > CMR EPUInd CPInfl ExcUSD) i.Year,gmmstyle(L.StrsScore PCR CorpLoan L.RiskLev L.GNPA L.NIM L.ContLiab L.OpEff L.Size > L.ROA L.EPUInd, collapse) ivstyle(i.Year Pub_Dummy GDPGr GsecYld CMR CPInfl ExcUSD, equation(level)) twostep robust > small orthogonal Favoring speed over space. To switch, type or click on mata: mata set matafavor space, perm. L.GDPGr dropped due to collinearity L.GsecYld dropped due to collinearity L.CMR dropped due to collinearity L.EPUInd dropped due to collinearity L.CPInfl dropped due to collinearity L.ExcUSD dropped due to collinearity 2005b.Year dropped due to collinearity 2011.Year dropped due to collinearity Warning: Number of instruments may be large relative to number of observations. Warning: Two-step estimated covariance matrix of moments is singular. Using a generalized inverse to calculate optimal weighting matrix for two-step estimation. Difference-in-Sargan/Hansen statistics may be negative. Dynamic panel-data estimation, two-step system GMM ------------------------------------------------------------------------------ Group variable: BankID Number of obs = 640 Time variable : Year Number of groups = 39 Number of instruments = 194 Obs per group: min = 14 F(28, 38) = 6.49 avg = 16.41 Prob > F = 0.000 max = 17 ------------------------------------------------------------------------------ | Corrected StrsScore | Coefficient std. err. t P>|t| [95% conf. interval] -------------+---------------------------------------------------------------- StrsScore | L1. | 1.021737 .0384199 26.59 0.000 .9439603 1.099515 | Pub_Dummy | L1. | -808.5408 1598.502 -0.51 0.616 -4044.539 2427.458 | CRAR | L1. | -2378.348 5992.648 -0.40 0.694 -14509.83 9753.133 | RiskLev | L1. | 2362.036 3233.552 0.73 0.470 -4183.948 8908.021 | GNPA | L1. | 2116.038 4117.542 0.51 0.610 -6219.489 10451.57 | PCR | L1. | 410.4023 388.355 1.06 0.297 -375.7812 1196.586 | NIM | L1. | 9902.552 21569.14 0.46 0.649 -33761.89 53567 | CorpLoan | L1. | -3394.472 5579.028 -0.61 0.547 -14688.62 7899.68 | ContLiab | L1. | -92.75463 244.1143 -0.38 0.706 -586.9382 401.4289 | OpEff | L1. | -9366.682 24839.45 -0.38 0.708 -59651.52 40918.15 | Size | L1. | 289.8995 279.3452 1.04 0.306 -275.6053 855.4044 | ROA | L1. | 7861.62 11866.93 0.66 0.512 -16161.73 31884.97 | Year | 2006 | 69.83238 241.5291 0.29 0.774 -419.1177 558.7824 2007 | 22.94654 235.2615 0.10 0.923 -453.3154 499.2085 2008 | 96.15762 150.0042 0.64 0.525 -207.5099 399.8251 2009 | 19.31248 105.8275 0.18 0.856 -194.924 233.549 2010 | -23.24291 121.6385 -0.19 0.849 -269.4872 223.0013 2012 | -134.4639 156.2665 -0.86 0.395 -450.8088 181.881 2013 | -49.08539 131.7116 -0.37 0.711 -315.7215 217.5507 2014 | -142.8812 122.3512 -1.17 0.250 -390.5683 104.8058 2015 | -289.6328 212.7753 -1.36 0.181 -720.3739 141.1083 2016 | -286.27 202.3132 -1.41 0.165 -695.8317 123.2917 2017 | -389.4327 317.6148 -1.23 0.228 -1032.41 253.5448 2018 | -395.2703 406.4983 -0.97 0.337 -1218.183 427.6424 2019 | -327.0297 412.6385 -0.79 0.433 -1162.373 508.3133 2020 | -532.6472 342.249 -1.56 0.128 -1225.494 160.1997 2021 | -391.5585 392.4236 -1.00 0.325 -1185.979 402.8615 2022 | -400.2929 337.4685 -1.19 0.243 -1083.462 282.8763 | _cons | -460.5984 2259.37 -0.20 0.840 -5034.454 4113.258 ------------------------------------------------------------------------------ Instruments for orthogonal deviations equation GMM-type (missing=0, separate instruments for each period unless collapsed) L(1/17).(L.StrsScore PCR CorpLoan L.RiskLev L.GNPA L.NIM L.ContLiab L.OpEff L.Size L.ROA L.EPUInd) collapsed Instruments for levels equation Standard 2005b.Year 2006.Year 2007.Year 2008.Year 2009.Year 2010.Year 2011.Year 2012.Year 2013.Year 2014.Year 2015.Year 2016.Year 2017.Year 2018.Year 2019.Year 2020.Year 2021.Year 2022.Year Pub_Dummy GDPGr GsecYld CMR CPInfl ExcUSD _cons GMM-type (missing=0, separate instruments for each period unless collapsed) D.(L.StrsScore PCR CorpLoan L.RiskLev L.GNPA L.NIM L.ContLiab L.OpEff L.Size L.ROA L.EPUInd) collapsed ------------------------------------------------------------------------------ Arellano-Bond test for AR(1) in first differences: z = -2.61 Pr > z = 0.009 Arellano-Bond test for AR(2) in first differences: z = -0.81 Pr > z = 0.421 ------------------------------------------------------------------------------ Sargan test of overid. restrictions: chi2(165) = 281.75 Prob > chi2 = 0.000 (Not robust, but not weakened by many instruments.) Hansen test of overid. restrictions: chi2(165) = 14.81 Prob > chi2 = 1.000 (Robust, but weakened by many instruments.) Difference-in-Hansen tests of exogeneity of instrument subsets: GMM instruments for levels Hansen test excluding group: chi2(154) = 8.68 Prob > chi2 = 1.000 Difference (null H = exogenous): chi2(11) = 6.13 Prob > chi2 = 0.864 iv(2005b.Year 2006.Year 2007.Year 2008.Year 2009.Year 2010.Year 2011.Year 2012.Year 2013.Year 2014.Year 2015.Year 20 > 16.Year 2017.Year 2018.Year 2019.Year 2020.Year 2021.Year 2022.Year Pub_Dummy GDPGr GsecYld CMR CPInfl ExcUSD, eq(le > vel)) Hansen test excluding group: chi2(160) = 14.81 Prob > chi2 = 1.000 Difference (null H = exogenous): chi2(5) = -0.00 Prob > chi2 = 1.000
Thanks
pankaj