Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • Two-step System GMM

    I'm interested in studying the role of various bank-specific and macroeconomic variables in determining stress in banks, using panel GMM estimation approach (motivated by persistence of risk in banks as per existing literature). My panel consists of 38 banks and 18 years. The variables are as follows.

    Dependent Variable: Stress Scoreit or ln(Stress Scoreit)
    Bank Specific Regressors: Pub_Dummy (1 for Public Sector bank, 0 for Private Sector Bank), Risk Leverage, GNPA, PCR, NIM, CorpLoan, Contingent Liabilities, Operating Efficiency, Size, RoA. (PCR and CorpLoan have been considered as predetermined variables, which are weakly exogenous)
    Macroeconomic Variables: GDP Growth, Gsec Yield, Call Money Rate, Inflation, Exchange Rate, EPU Score

    However on running two-step system GMM using -xtabond2, the following issues emerge.

    1) All the macroeconomic variables are getting dropped due to collinearity (which is not the case, whlle using pooled OLS regression)
    2) Coefficients of all bank specific variables except RoA and GNPA are coming out to be statstically insignificant at 95% confidence level (in pooled OLS regression, coefficients of all bank specific regressors except PCR, CorpLoan, Operating Efficiency and RoA are significant).
    3) Hansen test p-value is coming out to be 1, which is potentially problematic (Roodman, 2009)
    4) Difference-in-Hanesn statistic p-value, both for excluding group and difference, is coming out to be one, which I presume is problematic.

    Kindly advise, where I'm going wrong, alternatively, how the estimation can be improved? I am new to panel GMM and have a very basic understanding of GMM estimation. The codes I have used are as follows.

    1. Using StrsScore as dependent variable and other regressors/control variables at levels

    Code:
    . xtabond2 StrsScore L.StrsScore Pub_Dummy CRAR RiskLev GNPA PCR NIM CorpLoan ContLiab OpEff Size ROA GDPGr GsecYld CM
    > R EPUInd CPInfl ExcUSD i.Year,gmmstyle(L.StrsScore PCR CorpLoan L.RiskLev L.GNPA L.NIM L.ContLiab L.OpEff L.Size L.R
    > OA L.EPUInd, collapse) ivstyle(i.Year Pub_Dummy GDPGr GsecYld CMR CPInfl ExcUSD, equation(level)) twostep robust sma
    > ll orthogonal
    Favoring speed over space. To switch, type or click on mata: mata set matafavor space, perm.
    GDPGr dropped due to collinearity
    GsecYld dropped due to collinearity
    CMR dropped due to collinearity
    EPUInd dropped due to collinearity
    CPInfl dropped due to collinearity
    ExcUSD dropped due to collinearity
    2005b.Year dropped due to collinearity
    2019.Year dropped due to collinearity
    Warning: Number of instruments may be large relative to number of observations.
    Warning: Two-step estimated covariance matrix of moments is singular.
      Using a generalized inverse to calculate optimal weighting matrix for two-step estimation.
      Difference-in-Sargan/Hansen statistics may be negative.
    
    Dynamic panel-data estimation, two-step system GMM
    ------------------------------------------------------------------------------
    Group variable: BankID                          Number of obs      =       640
    Time variable : Year                            Number of groups   =        39
    Number of instruments = 195                     Obs per group: min =        14
    F(28, 38)     =     11.92                                      avg =     16.41
    Prob > F      =     0.000                                      max =        17
    ------------------------------------------------------------------------------
                 |              Corrected
       StrsScore | Coefficient  std. err.      t    P>|t|     [95% conf. interval]
    -------------+----------------------------------------------------------------
       StrsScore |
             L1. |   1.007106   .0290447    34.67   0.000      .948308    1.065904
                 |
       Pub_Dummy |  -38.60584   269.8552    -0.14   0.887    -584.8992    507.6875
            CRAR |   6232.027   8747.618     0.71   0.481     -11476.6    23940.65
         RiskLev |  -2016.494   4204.734    -0.48   0.634    -10528.53    6495.545
            GNPA |   1936.759   869.6131     2.23   0.032     176.3191    3697.199
             PCR |   353.2481   441.8018     0.80   0.429    -541.1329    1247.629
             NIM |   4897.158   27923.87     0.18   0.862    -51631.76    61426.08
        CorpLoan |  -4264.571   3052.743    -1.40   0.171    -10444.53    1915.383
        ContLiab |  -42.89541   52.97098    -0.81   0.423    -150.1296    64.33873
           OpEff |  -19178.99   26349.87    -0.73   0.471    -72521.51    34163.53
            Size |   156.5269   101.4404     1.54   0.131    -48.82837    361.8821
             ROA |   12847.05   4647.584     2.76   0.009     3438.505    22255.59
                 |
            Year |
           2006  |    154.515    241.632     0.64   0.526    -334.6435    643.6735
           2007  |   109.6037   222.2718     0.49   0.625    -340.3621    559.5694
           2008  |   21.27166   200.1552     0.11   0.916    -383.9214    426.4647
           2009  |  -30.94667   157.4384    -0.20   0.845     -349.664    287.7707
           2010  |  -159.2775   165.7282    -0.96   0.343    -494.7768    176.2217
           2011  |  -99.53624   189.7621    -0.52   0.603    -483.6896    284.6171
           2012  |  -67.23581    134.552    -0.50   0.620    -339.6221    205.1504
           2013  |  -19.35655    94.8411    -0.20   0.839    -211.3523    172.6392
           2014  |    3.22885   113.5994     0.03   0.977    -226.7412    233.1989
           2015  |  -101.7981   181.5714    -0.56   0.578    -469.3702     265.774
           2016  |  -216.9991   80.92474    -2.68   0.011    -380.8227   -53.17556
           2017  |  -233.4362   95.06184    -2.46   0.019    -425.8789    -40.9936
           2018  |  -176.8919   65.95511    -2.68   0.011     -310.411   -43.37278
           2020  |  -245.7197    65.1777    -3.77   0.001    -377.6651   -113.7744
           2021  |  -174.6449   169.9768    -1.03   0.311    -518.7449    169.4552
           2022  |  -248.8271   105.2501    -2.36   0.023    -461.8948   -35.75938
                 |
           _cons |   118.1285   626.1587     0.19   0.851    -1149.464     1385.72
    ------------------------------------------------------------------------------
    Instruments for orthogonal deviations equation
      GMM-type (missing=0, separate instruments for each period unless collapsed)
        L(1/17).(L.StrsScore PCR CorpLoan L.RiskLev L.GNPA L.NIM L.ContLiab
        L.OpEff L.Size L.ROA L.EPUInd) collapsed
    Instruments for levels equation
      Standard
        2005b.Year 2006.Year 2007.Year 2008.Year 2009.Year 2010.Year 2011.Year
        2012.Year 2013.Year 2014.Year 2015.Year 2016.Year 2017.Year 2018.Year
        2019.Year 2020.Year 2021.Year 2022.Year Pub_Dummy GDPGr GsecYld CMR CPInfl
        ExcUSD
        _cons
      GMM-type (missing=0, separate instruments for each period unless collapsed)
        D.(L.StrsScore PCR CorpLoan L.RiskLev L.GNPA L.NIM L.ContLiab L.OpEff
        L.Size L.ROA L.EPUInd) collapsed
    ------------------------------------------------------------------------------
    Arellano-Bond test for AR(1) in first differences: z =  -1.98  Pr > z =  0.047
    Arellano-Bond test for AR(2) in first differences: z =   0.14  Pr > z =  0.889
    ------------------------------------------------------------------------------
    Sargan test of overid. restrictions: chi2(166)  = 274.95  Prob > chi2 =  0.000
      (Not robust, but not weakened by many instruments.)
    Hansen test of overid. restrictions: chi2(166)  =  18.86  Prob > chi2 =  1.000
      (Robust, but weakened by many instruments.)
    
    Difference-in-Hansen tests of exogeneity of instrument subsets:
      GMM instruments for levels
        Hansen test excluding group:     chi2(155)  =  19.32  Prob > chi2 =  1.000
        Difference (null H = exogenous): chi2(11)   =  -0.46  Prob > chi2 =  1.000
      iv(2005b.Year 2006.Year 2007.Year 2008.Year 2009.Year 2010.Year 2011.Year 2012.Year 2013.Year 2014.Year 2015.Year 20
    > 16.Year 2017.Year 2018.Year 2019.Year 2020.Year 2021.Year 2022.Year Pub_Dummy GDPGr GsecYld CMR CPInfl ExcUSD, eq(le
    > vel))
        Hansen test excluding group:     chi2(160)  =  20.72  Prob > chi2 =  1.000
        Difference (null H = exogenous): chi2(6)    =  -1.85  Prob > chi2 =  1.000

    2. Using StrsScore as dependent variable and other regressors/control variables at their first lag
    Code:
    . xtabond2 StrsScore L.StrsScore L.(Pub_Dummy CRAR RiskLev GNPA PCR NIM CorpLoan ContLiab OpEff Size ROA GDPGr GsecYld
    >  CMR EPUInd CPInfl ExcUSD) i.Year,gmmstyle(L.StrsScore PCR CorpLoan L.RiskLev L.GNPA L.NIM L.ContLiab L.OpEff L.Size
    >  L.ROA L.EPUInd, collapse) ivstyle(i.Year Pub_Dummy GDPGr GsecYld CMR CPInfl ExcUSD, equation(level)) twostep robust
    >  small orthogonal
    Favoring speed over space. To switch, type or click on mata: mata set matafavor space, perm.
    L.GDPGr dropped due to collinearity
    L.GsecYld dropped due to collinearity
    L.CMR dropped due to collinearity
    L.EPUInd dropped due to collinearity
    L.CPInfl dropped due to collinearity
    L.ExcUSD dropped due to collinearity
    2005b.Year dropped due to collinearity
    2011.Year dropped due to collinearity
    Warning: Number of instruments may be large relative to number of observations.
    Warning: Two-step estimated covariance matrix of moments is singular.
      Using a generalized inverse to calculate optimal weighting matrix for two-step estimation.
      Difference-in-Sargan/Hansen statistics may be negative.
    
    Dynamic panel-data estimation, two-step system GMM
    ------------------------------------------------------------------------------
    Group variable: BankID                          Number of obs      =       640
    Time variable : Year                            Number of groups   =        39
    Number of instruments = 194                     Obs per group: min =        14
    F(28, 38)     =      6.49                                      avg =     16.41
    Prob > F      =     0.000                                      max =        17
    ------------------------------------------------------------------------------
                 |              Corrected
       StrsScore | Coefficient  std. err.      t    P>|t|     [95% conf. interval]
    -------------+----------------------------------------------------------------
       StrsScore |
             L1. |   1.021737   .0384199    26.59   0.000     .9439603    1.099515
                 |
       Pub_Dummy |
             L1. |  -808.5408   1598.502    -0.51   0.616    -4044.539    2427.458
                 |
            CRAR |
             L1. |  -2378.348   5992.648    -0.40   0.694    -14509.83    9753.133
                 |
         RiskLev |
             L1. |   2362.036   3233.552     0.73   0.470    -4183.948    8908.021
                 |
            GNPA |
             L1. |   2116.038   4117.542     0.51   0.610    -6219.489    10451.57
                 |
             PCR |
             L1. |   410.4023    388.355     1.06   0.297    -375.7812    1196.586
                 |
             NIM |
             L1. |   9902.552   21569.14     0.46   0.649    -33761.89       53567
                 |
        CorpLoan |
             L1. |  -3394.472   5579.028    -0.61   0.547    -14688.62     7899.68
                 |
        ContLiab |
             L1. |  -92.75463   244.1143    -0.38   0.706    -586.9382    401.4289
                 |
           OpEff |
             L1. |  -9366.682   24839.45    -0.38   0.708    -59651.52    40918.15
                 |
            Size |
             L1. |   289.8995   279.3452     1.04   0.306    -275.6053    855.4044
                 |
             ROA |
             L1. |    7861.62   11866.93     0.66   0.512    -16161.73    31884.97
                 |
            Year |
           2006  |   69.83238   241.5291     0.29   0.774    -419.1177    558.7824
           2007  |   22.94654   235.2615     0.10   0.923    -453.3154    499.2085
           2008  |   96.15762   150.0042     0.64   0.525    -207.5099    399.8251
           2009  |   19.31248   105.8275     0.18   0.856     -194.924     233.549
           2010  |  -23.24291   121.6385    -0.19   0.849    -269.4872    223.0013
           2012  |  -134.4639   156.2665    -0.86   0.395    -450.8088     181.881
           2013  |  -49.08539   131.7116    -0.37   0.711    -315.7215    217.5507
           2014  |  -142.8812   122.3512    -1.17   0.250    -390.5683    104.8058
           2015  |  -289.6328   212.7753    -1.36   0.181    -720.3739    141.1083
           2016  |    -286.27   202.3132    -1.41   0.165    -695.8317    123.2917
           2017  |  -389.4327   317.6148    -1.23   0.228     -1032.41    253.5448
           2018  |  -395.2703   406.4983    -0.97   0.337    -1218.183    427.6424
           2019  |  -327.0297   412.6385    -0.79   0.433    -1162.373    508.3133
           2020  |  -532.6472    342.249    -1.56   0.128    -1225.494    160.1997
           2021  |  -391.5585   392.4236    -1.00   0.325    -1185.979    402.8615
           2022  |  -400.2929   337.4685    -1.19   0.243    -1083.462    282.8763
                 |
           _cons |  -460.5984    2259.37    -0.20   0.840    -5034.454    4113.258
    ------------------------------------------------------------------------------
    Instruments for orthogonal deviations equation
      GMM-type (missing=0, separate instruments for each period unless collapsed)
        L(1/17).(L.StrsScore PCR CorpLoan L.RiskLev L.GNPA L.NIM L.ContLiab
        L.OpEff L.Size L.ROA L.EPUInd) collapsed
    Instruments for levels equation
      Standard
        2005b.Year 2006.Year 2007.Year 2008.Year 2009.Year 2010.Year 2011.Year
        2012.Year 2013.Year 2014.Year 2015.Year 2016.Year 2017.Year 2018.Year
        2019.Year 2020.Year 2021.Year 2022.Year Pub_Dummy GDPGr GsecYld CMR CPInfl
        ExcUSD
        _cons
      GMM-type (missing=0, separate instruments for each period unless collapsed)
        D.(L.StrsScore PCR CorpLoan L.RiskLev L.GNPA L.NIM L.ContLiab L.OpEff
        L.Size L.ROA L.EPUInd) collapsed
    ------------------------------------------------------------------------------
    Arellano-Bond test for AR(1) in first differences: z =  -2.61  Pr > z =  0.009
    Arellano-Bond test for AR(2) in first differences: z =  -0.81  Pr > z =  0.421
    ------------------------------------------------------------------------------
    Sargan test of overid. restrictions: chi2(165)  = 281.75  Prob > chi2 =  0.000
      (Not robust, but not weakened by many instruments.)
    Hansen test of overid. restrictions: chi2(165)  =  14.81  Prob > chi2 =  1.000
      (Robust, but weakened by many instruments.)
    
    Difference-in-Hansen tests of exogeneity of instrument subsets:
      GMM instruments for levels
        Hansen test excluding group:     chi2(154)  =   8.68  Prob > chi2 =  1.000
        Difference (null H = exogenous): chi2(11)   =   6.13  Prob > chi2 =  0.864
      iv(2005b.Year 2006.Year 2007.Year 2008.Year 2009.Year 2010.Year 2011.Year 2012.Year 2013.Year 2014.Year 2015.Year 20
    > 16.Year 2017.Year 2018.Year 2019.Year 2020.Year 2021.Year 2022.Year Pub_Dummy GDPGr GsecYld CMR CPInfl ExcUSD, eq(le
    > vel))
        Hansen test excluding group:     chi2(160)  =  14.81  Prob > chi2 =  1.000
        Difference (null H = exogenous): chi2(5)    =  -0.00  Prob > chi2 =  1.000
    I would greatly appreciate any suggestion.

    Thanks
    pankaj
Working...
X