Hi,
I would like to test the misspecification error using (ovtest or linktest) after estimating RE model.
My stata codes are given below: (Started with xtreg,fe and then tested for xttest3, which suggested the presence of heteroscedasticity. So I have used xtoverid and got the RE model as the preferred model. )
xtreg SI_Final shareofirr_final Share_urbanpop shareofnonagriareainga shareofscandst averagelandsize_ha sharemarginal numberofbanksper1000sqkm gddppercapitaRS populationdensitypersqkm rainfall meantemperature i.year,re robust
Random-effects GLS regression Number of obs = 108
Group variable: districtid Number of groups = 27
R-sq: within = 0.3362 Obs per group: min = 4
between = 0.3131 avg = 4.0
overall = 0.3151 max = 4
Wald chi2(14) = 73.29
corr(u_i, X) = 0 (assumed) Prob > chi2 = 0.0000
(Std. Err. adjusted for 27 clusters in districtid)
------------------------------------------------------------------------------------------
| Robust
SI_Final | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------------------+----------------------------------------------------------------
shareofirr_final | .0001311 .0000531 2.47 0.013 .0000271 .0002352
Share_urbanpop | -.000071 .000834 -0.09 0.932 -.0017056 .0015636
shareofnonagriareainga | -.0158636 .0075536 -2.10 0.036 -.0306684 -.0010589
shareofscandst | .0023731 .0018152 1.31 0.191 -.0011845 .0059308
averagelandsize_ha | -.0024828 .0359169 -0.07 0.945 -.0728786 .067913
sharemarginal | .0010549 .0007419 1.42 0.155 -.0003991 .0025089
numberofbanksper1000sqkm | .0006007 .0003625 1.66 0.097 -.0001097 .0013111
gddppercapitaRS | -4.19e-07 1.07e-07 -3.91 0.000 -6.29e-07 -2.09e-07
populationdensitypersqkm | .0001655 .0000661 2.50 0.012 .000036 .000295
rainfall | -9.77e-06 9.13e-06 -1.07 0.285 -.0000277 8.13e-06
meantemperature | -.0032167 .0050669 -0.63 0.526 -.0131477 .0067143
|
year |
2006 | .0044992 .0131529 0.34 0.732 -.0212801 .0302784
2011 | .0391637 .019784 1.98 0.048 .0003877 .0779397
2016 | .0402596 .0270659 1.49 0.137 -.0127887 .0933078
|
_cons | .7324753 .1512481 4.84 0.000 .4360344 1.028916
-------------------------+----------------------------------------------------------------
sigma_u | .07243071
sigma_e | .03383597
rho | .82086397 (fraction of variance due to u_i)
------------------------------------------------------------------------------------------
Then I used manual commands to test omitted variable bias in the RE model.
predict fit, xbu
gen fitt_2=fit^2
. gen fitt_3=fit^3
. gen fitt_4=fit^4
After that I run the RE model included with these as variables
xtreg SI_Final shareofirr_final Share_urbanpop shareofnonagriareainga shareofscandst averagelandsize_ha sharemarginal numberofbanksper1
> 000sqkm gddppercapitaRS populationdensitypersqkm rainfall meantemperature fitt_2 fitt_3 fitt_4 i.year,re robust
Random-effects GLS regression Number of obs = 108
Group variable: districtid Number of groups = 27
R-sq: within = 0.3899 Obs per group: min = 4
between = 0.9973 avg = 4.0
overall = 0.9220 max = 4
Wald chi2(17) = 36580.52
corr(u_i, X) = 0 (assumed) Prob > chi2 = 0.0000
(Std. Err. adjusted for 27 clusters in districtid)
------------------------------------------------------------------------------------------
| Robust
SI_Final | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------------------+----------------------------------------------------------------
shareofirr_final | .0000161 .0000492 0.33 0.744 -.0000804 .0001126
Share_urbanpop | -.0000547 .0001708 -0.32 0.749 -.0003895 .0002801
shareofnonagriareainga | .0009251 .0008492 1.09 0.276 -.0007394 .0025895
shareofscandst | .0000777 .0002727 0.29 0.776 -.0004567 .0006122
averagelandsize_ha | -.0071001 .0110872 -0.64 0.522 -.0288305 .0146304
sharemarginal | -.0003738 .0005034 -0.74 0.458 -.0013603 .0006128
numberofbanksper1000sqkm | -.0000579 .0001949 -0.30 0.766 -.00044 .0003242
gddppercapitaRS | 9.55e-08 7.09e-08 1.35 0.178 -4.34e-08 2.34e-07
populationdensitypersqkm | -.0000119 8.11e-06 -1.47 0.142 -.0000278 3.99e-06
rainfall | 3.21e-07 3.44e-06 0.09 0.926 -6.41e-06 7.06e-06
meantemperature | -.0001208 .0008875 -0.14 0.892 -.0018602 .0016186
fitt_2 | 11.67344 6.944275 1.68 0.093 -1.937085 25.28397
fitt_3 | -22.06439 14.91381 -1.48 0.139 -51.29491 7.166136
fitt_4 | 12.4602 8.881179 1.40 0.161 -4.946595 29.86699
|
year |
2006 | -.0013051 .0111626 -0.12 0.907 -.0231833 .0205732
2011 | -.009395 .0147289 -0.64 0.524 -.0382633 .0194732
2016 | -.01071 .0174531 -0.61 0.539 -.0449175 .0234976
|
_cons | -.4272979 .4024529 -1.06 0.288 -1.216091 .3614953
-------------------------+----------------------------------------------------------------
sigma_u | 0
sigma_e | .03162606
rho | 0 (fraction of variance due to u_i)
------------------------------------------------------------------------------------------
. test fitt_2 fitt_3 fitt_4
( 1) fitt_2 = 0
( 2) fitt_3 = 0
( 3) fitt_4 = 0
chi2( 3) = 4892.64
Prob > chi2 = 0.0000
.
Q1.As the p-value is significant, I have to reject the H0 of no omitted variable bias assumption. Is that the correct interpretation?
Q2: Misspecification and omitted variable bias the same? Are there any other tests to be checked with? like linktest?
Q3: Ovtest was not working with xtreg commands. So should I try to regress along with i.panelid in the RHS of the model?
I would appreciate it if someone could kindly help me with the above queries.
Thank you
Radhika C
I would like to test the misspecification error using (ovtest or linktest) after estimating RE model.
My stata codes are given below: (Started with xtreg,fe and then tested for xttest3, which suggested the presence of heteroscedasticity. So I have used xtoverid and got the RE model as the preferred model. )
xtreg SI_Final shareofirr_final Share_urbanpop shareofnonagriareainga shareofscandst averagelandsize_ha sharemarginal numberofbanksper1000sqkm gddppercapitaRS populationdensitypersqkm rainfall meantemperature i.year,re robust
Random-effects GLS regression Number of obs = 108
Group variable: districtid Number of groups = 27
R-sq: within = 0.3362 Obs per group: min = 4
between = 0.3131 avg = 4.0
overall = 0.3151 max = 4
Wald chi2(14) = 73.29
corr(u_i, X) = 0 (assumed) Prob > chi2 = 0.0000
(Std. Err. adjusted for 27 clusters in districtid)
------------------------------------------------------------------------------------------
| Robust
SI_Final | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------------------+----------------------------------------------------------------
shareofirr_final | .0001311 .0000531 2.47 0.013 .0000271 .0002352
Share_urbanpop | -.000071 .000834 -0.09 0.932 -.0017056 .0015636
shareofnonagriareainga | -.0158636 .0075536 -2.10 0.036 -.0306684 -.0010589
shareofscandst | .0023731 .0018152 1.31 0.191 -.0011845 .0059308
averagelandsize_ha | -.0024828 .0359169 -0.07 0.945 -.0728786 .067913
sharemarginal | .0010549 .0007419 1.42 0.155 -.0003991 .0025089
numberofbanksper1000sqkm | .0006007 .0003625 1.66 0.097 -.0001097 .0013111
gddppercapitaRS | -4.19e-07 1.07e-07 -3.91 0.000 -6.29e-07 -2.09e-07
populationdensitypersqkm | .0001655 .0000661 2.50 0.012 .000036 .000295
rainfall | -9.77e-06 9.13e-06 -1.07 0.285 -.0000277 8.13e-06
meantemperature | -.0032167 .0050669 -0.63 0.526 -.0131477 .0067143
|
year |
2006 | .0044992 .0131529 0.34 0.732 -.0212801 .0302784
2011 | .0391637 .019784 1.98 0.048 .0003877 .0779397
2016 | .0402596 .0270659 1.49 0.137 -.0127887 .0933078
|
_cons | .7324753 .1512481 4.84 0.000 .4360344 1.028916
-------------------------+----------------------------------------------------------------
sigma_u | .07243071
sigma_e | .03383597
rho | .82086397 (fraction of variance due to u_i)
------------------------------------------------------------------------------------------
Then I used manual commands to test omitted variable bias in the RE model.
predict fit, xbu
gen fitt_2=fit^2
. gen fitt_3=fit^3
. gen fitt_4=fit^4
After that I run the RE model included with these as variables
xtreg SI_Final shareofirr_final Share_urbanpop shareofnonagriareainga shareofscandst averagelandsize_ha sharemarginal numberofbanksper1
> 000sqkm gddppercapitaRS populationdensitypersqkm rainfall meantemperature fitt_2 fitt_3 fitt_4 i.year,re robust
Random-effects GLS regression Number of obs = 108
Group variable: districtid Number of groups = 27
R-sq: within = 0.3899 Obs per group: min = 4
between = 0.9973 avg = 4.0
overall = 0.9220 max = 4
Wald chi2(17) = 36580.52
corr(u_i, X) = 0 (assumed) Prob > chi2 = 0.0000
(Std. Err. adjusted for 27 clusters in districtid)
------------------------------------------------------------------------------------------
| Robust
SI_Final | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------------------+----------------------------------------------------------------
shareofirr_final | .0000161 .0000492 0.33 0.744 -.0000804 .0001126
Share_urbanpop | -.0000547 .0001708 -0.32 0.749 -.0003895 .0002801
shareofnonagriareainga | .0009251 .0008492 1.09 0.276 -.0007394 .0025895
shareofscandst | .0000777 .0002727 0.29 0.776 -.0004567 .0006122
averagelandsize_ha | -.0071001 .0110872 -0.64 0.522 -.0288305 .0146304
sharemarginal | -.0003738 .0005034 -0.74 0.458 -.0013603 .0006128
numberofbanksper1000sqkm | -.0000579 .0001949 -0.30 0.766 -.00044 .0003242
gddppercapitaRS | 9.55e-08 7.09e-08 1.35 0.178 -4.34e-08 2.34e-07
populationdensitypersqkm | -.0000119 8.11e-06 -1.47 0.142 -.0000278 3.99e-06
rainfall | 3.21e-07 3.44e-06 0.09 0.926 -6.41e-06 7.06e-06
meantemperature | -.0001208 .0008875 -0.14 0.892 -.0018602 .0016186
fitt_2 | 11.67344 6.944275 1.68 0.093 -1.937085 25.28397
fitt_3 | -22.06439 14.91381 -1.48 0.139 -51.29491 7.166136
fitt_4 | 12.4602 8.881179 1.40 0.161 -4.946595 29.86699
|
year |
2006 | -.0013051 .0111626 -0.12 0.907 -.0231833 .0205732
2011 | -.009395 .0147289 -0.64 0.524 -.0382633 .0194732
2016 | -.01071 .0174531 -0.61 0.539 -.0449175 .0234976
|
_cons | -.4272979 .4024529 -1.06 0.288 -1.216091 .3614953
-------------------------+----------------------------------------------------------------
sigma_u | 0
sigma_e | .03162606
rho | 0 (fraction of variance due to u_i)
------------------------------------------------------------------------------------------
. test fitt_2 fitt_3 fitt_4
( 1) fitt_2 = 0
( 2) fitt_3 = 0
( 3) fitt_4 = 0
chi2( 3) = 4892.64
Prob > chi2 = 0.0000
.
Q1.As the p-value is significant, I have to reject the H0 of no omitted variable bias assumption. Is that the correct interpretation?
Q2: Misspecification and omitted variable bias the same? Are there any other tests to be checked with? like linktest?
Q3: Ovtest was not working with xtreg commands. So should I try to regress along with i.panelid in the RHS of the model?
I would appreciate it if someone could kindly help me with the above queries.
Thank you
Radhika C
Comment