I run a linear mixed model (shown below). I want to get a p-value for each of the margin comparisons. For example, how do I get a p-value for 1#Not Black vs. 1#Black in the margins table. Your help will be appreciated.
Code:
mixed sbp ib6.group c.NaK##i.black_or_not i.stratum age i.sex dbp || id2: Performing EM optimization ... Performing gradient-based optimization: Iteration 0: Log likelihood = -20033.822 Iteration 1: Log likelihood = -20033.822 Computing standard errors ... Mixed-effects ML regression Number of obs = 5,542 Group variable: id2 Number of groups = 884 Obs per group: min = 1 avg = 6.3 max = 7 Wald chi2(12) = 4419.31 Log likelihood = -20033.822 Prob > chi2 = 0.0000 ------------------------------------------------------------------------------------ sbp | Coefficient Std. err. z P>|z| [95% conf. interval] -------------------+---------------------------------------------------------------- group | Acebutolol | -3.520989 .9389604 -3.75 0.000 -5.361318 -1.680661 Amlodipine | -4.247379 .9538252 -4.45 0.000 -6.116842 -2.377916 Chlorthalidone | -4.875394 .9388959 -5.19 0.000 -6.715596 -3.035192 Doxazosin | -2.144564 .9343436 -2.30 0.022 -3.975844 -.3132841 Enalapril | -2.51117 .9396513 -2.67 0.008 -4.352852 -.6694871 | NaK | .5992256 .0808056 7.42 0.000 .4408496 .7576017 | black_or_not | Black | 2.374209 .8903708 2.67 0.008 .6291142 4.119304 | black_or_not#c.NaK | Black | -.3278207 .1302357 -2.52 0.012 -.5830779 -.0725635 | 2.stratum | .3558746 .5942132 0.60 0.549 -.8087618 1.520511 age | .5579565 .0451791 12.35 0.000 .4694071 .6465058 | sex | Female | 2.839032 .6170714 4.60 0.000 1.629594 4.04847 dbp | 1.118812 .0177193 63.14 0.000 1.084082 1.153541 _cons | 5.388162 3.020926 1.78 0.074 -.5327437 11.30907 ------------------------------------------------------------------------------------ ------------------------------------------------------------------------------ Random-effects parameters | Estimate Std. err. [95% conf. interval] -----------------------------+------------------------------------------------ id2: Identity | var(_cons) | 63.13963 3.48728 56.66163 70.35823 -----------------------------+------------------------------------------------ var(Residual) | 58.50251 1.212088 56.17445 60.92706 ------------------------------------------------------------------------------ LR test vs. linear model: chibar2(01) = 2268.80 Prob >= chibar2 = 0.0000 . testparm c.NaK#i.black_or_not ( 1) [sbp]2.black_or_not#c.NaK = 0 chi2( 1) = 6.34 Prob > chi2 = 0.0118 . margins black_or_not, at(NaK= (1.62 3.12 4.62 )) vsquish Predictive margins Number of obs = 5,542 Expression: Linear prediction, fixed portion, predict() 1._at: NaK = 1.62 2._at: NaK = 3.12 3._at: NaK = 4.62 ---------------------------------------------------------------------------------- | Delta-method | Margin std. err. z P>|z| [95% conf. interval] -----------------+---------------------------------------------------------------- _at#black_or_not | 1#Not Black | 124.0313 .3401181 364.67 0.000 123.3647 124.6979 1#Black | 125.8744 .7170319 175.55 0.000 124.4691 127.2798 2#Not Black | 124.9301 .3228599 386.95 0.000 124.2973 125.5629 2#Black | 126.2815 .6839433 184.64 0.000 124.941 127.622 3#Not Black | 125.8289 .349542 359.98 0.000 125.1439 126.514 3#Black | 126.6886 .6844899 185.08 0.000 125.3471 128.0302 ----------------------------------------------------------------------------------
Comment