Hi Profs and colleagues,
------------------ copy up to and including the previous line ------------------
Listed ... out of 107659 observations
The coefficient of interest is 2.5 which is a pretty large number (much above the literature). I tried several ways to figure out the reason. i.e check for outliers, collinearity, and scales of variables. Nothing is wrong. Although there is endogeneity, after running 2sls with IV even coefficient becomes larger (11). (IV variable has been checked. its reliable). So please share your ideas what can be the reason of the large coefficient and what are the possible solution.
Reaaly appreciated.
Cheers,
Paris
Code:
* Example generated by -dataex-. For more info, type help dataex clear input float mig_jump double(immi_sh firm_age) float(foreign_aff sector) 0 .0009228768042223834 38 1 7 0 .0009228768042223834 15 1 12 0 .0009228768042223834 11 1 12 0 .0065667845980023600 37 1 7 0 .0065667845980023600 44 1 13 0 .0065667845980023600 26 1 7 end
Listed ... out of 107659 observations
Code:
reg mig_jump immi_sh firm_age foreign_aff i.sector . reg mig_jump immi_sh firm_age foreign_aff i.sector Source | SS df MS Number of obs = 107,659 -------------+---------------------------------- F(10, 107648) = 30.20 Model | 6.99315118 10 .699315118 Prob > F = 0.0000 Residual | 2493.0856 107,648 .023159609 R-squared = 0.0028 -------------+---------------------------------- Adj R-squared = 0.0027 Total | 2500.07875 107,658 .023222415 Root MSE = .15218 ------------------------------------------------------------------------------ mig_jump | Coefficient Std. err. t P>|t| [95% conf. interval] -------------+---------------------------------------------------------------- immi_sh | 2.549468 .383791 6.64 0.000 1.797243 3.301693 firm_age | .0001465 .0000291 5.03 0.000 .0000894 .0002035 foreign_aff | -.0068377 .0021686 -3.15 0.002 -.0110882 -.0025872 | sector | 6 | -.0068547 .0020272 -3.38 0.001 -.0108279 -.0028815 7 | -.0137221 .0012101 -11.34 0.000 -.0160939 -.0113504 9 | .0017617 .0016331 1.08 0.281 -.0014392 .0049626 10 | .0010783 .0035832 0.30 0.763 -.0059447 .0081014 11 | -.0072893 .0032724 -2.23 0.026 -.0137032 -.0008755 12 | -.0112979 .0017646 -6.40 0.000 -.0147564 -.0078393 13 | -.0103782 .0026364 -3.94 0.000 -.0155455 -.005211 | _cons | .0272185 .0026262 10.36 0.000 .0220711 .0323659 ------------------------------------------------------------------------------
Reaaly appreciated.
Cheers,
Paris
Comment