Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • Predicted Residual is not clearning from memory

    Hi

    I am trying to predict the residual after regression. But the predicted residual from the previous regression is not clearing from the memory, and it shows an error that the variable is already defined. Even though I dropped the variable and cleared the estimates and results. Below is the codes:


    Code:
    
    
    clear results
    estimate clear
    ereturn list
    
    levelsof Fama_French, local(industries)
    
    foreach Fama_French of local industries {
        qui levelsof year if Fama_French == `Fama_French', local(years)
        
        foreach year of local years {
            qui count if Fama_French == `Fama_French' & year == `year'
            local obs = r(N)
    
            if `obs' >= 20 {
                qui reg TCA_W CFOt_1_W CFOt_W CFOt1_W C_Rev_W PPE_W if Fama_French == `Fama_French' & year == `year', robust
                
                predict double AQ, residuals 
                }
        }
    }

    Error:

    (51,222 missing values generated)
    variable AQ already defined
    r(110);





    Code:
    * Example generated by -dataex-. For more info, type help dataex
    clear
    input float(PPE_W CFOt_W CFOt1_W CFOt_1_W TCA_W C_Rev_W)
      -5.21567 -1.5112712 -1.0715939          .          .           .
      -2.65431  -.4415217  -.3830536  -.6226791 .019210204  -1.7223364
     25.682127   3.207224   5.545249  3.6967645   3.083213   10.168536
    -24.948883  -5.204473  -4.466454  -3.010128  -.3389456  -2.9585304
      2.447334   .4084733 -.12563916  .47596785   .1154127   -.3859752
     19.026062 -1.1796982   .8806584   3.835391    -3.8107  -12.090535
      -23.5871 -1.0354838  -.7032258  1.3870968   1.016129  -2.2032259
    -75.281555 -2.1165047  -6.242719  -3.116505  -1.961165  -10.194175
         141.6  17.146667  17.973333   5.813333   8.853333   -5.146667
    -2.0669277 -.23994306  .12851548  -.2289071 .016375937  -1.0804557
      2.535138 -.13387725  .39013535  .24995366   .3371037   .13906917
    -37.444443  -6.152047 -4.3976607   2.111111   6.122808   25.608187
             .          .          .          .          .           .
     -42.65585  -21.44781  -22.02254          .          .           .
     -5.178624 -2.5783305  -2.677302  -2.511043   .8482286  -1.0590719
     1.5590916   .7671875  .27378368   .7388269   .3937432    .0842314
      15.33969  3.9618595  4.3802147   11.10179 -.22992358  -21.484995
     305.26315   58.81108   60.55072   59.65454  -38.67117   -51.45112
    -2.1688414 -.51948506  -.5609948  -.6436641   .3511691 -.027673176
    -1.0486771 -.27162483  -.4723541 -.25152645   .0234905  -.03799186
      3.363446  1.2272778   1.388124   .7057398 -.06147406   1.4403437
      -43.9944 -17.647058 -17.187675  -15.60224  1.5658263   -8.929972
     -7.609097 -2.6329114 -3.3902595 -2.7032826 -.27633554  -.56897664
     -15.02568  -5.967523  -7.955438  -4.634441   .3549849  -2.0422962
      54.13456   27.79156  25.279684  20.846966  .46701846    22.34037
             .          .          .          .          .           .
     1.1264602 -.29258355  -.1764466          .          .           .
             .          .          .          .          .           .
      .1788618 -2.3252032  -9.300813          .          .           .
     .52380955 -27.238096  -24.66667  -6.809524  16.190477  -19.809525
    -.24175824  11.384616    24.1978   12.57143  1.7142856           0
             0  -7.339999  -.6333333  -3.453333 -1.9866667           0
             0        -68 -66.217766 -68.180984  -38.67117           0
             0  14.328358   20.32836   2.835821  1.8805977           0
             0  14.967033   5.362638   10.54945  -5.186813           0
             0  .13326052  1.0322229   .3719279  .13489898           0
             0 -1.8243243 -1.2760618 -.23552124   .6544401           0
             0  -2.443623         -2 -3.4935305   .8724584           0
             0  -5.303922  -6.970589  -6.480392   .3627448           0
             0 -10.304348  -6.014493   -7.84058 -1.0289855           0
             .          .          .          .          .           .
     -.3369334    .388378  -.3517678          .          .           .
      2.792249  2.2669358  2.1427534  -2.502866   .4744449   10.625272
     -1.471801  -1.098882 -1.9653003 -1.1625673 -.59354043   -2.646791
    -.25779983  -.3283341  -.3466663 -.18358538 -.09265739   -.7651396
    -1.9002293 -2.2997704  -.7657641 -2.1781552 -1.5053694   -.9627352
     -.7845659  -.3271508 -1.2481766  -.9825112 -1.4983138   -1.441926
     -.0832638 -.12798774  -.1791973 -.03354597  -.1030826  -.04653332
     .15898304   .3287125   .7508897  .23477563   .1505526    .5885359
             .          .          .          .          .           .
      6.365853  -1.386418  -.5251076          .          .           .
      .5241773  -.1843519  -.6279382  -.4867361          .  -.27132306
     1.7057302  -.9217499 -1.2362292    -.27061          .    -.109427
      7.183027  -5.128834  -1.311861  -3.824131          .   -.4662577
      5.925688 -1.1770642  -.5844037 -4.6018343          .   -.4082569
      10.23632 -1.0103093  2.0919905 -2.0348928          .  -1.9746233
      2.184144    .444033 -1.0728834   -.214442          .   .12859789
      2.387061 -1.1714759  .25877595  .48483735          .  -.19775777
      5.517797   .5966102 -1.1093221 -2.7008476          .   -.8050848
     16.789133 -3.3868046  -.5743855  1.8214748          .    3.249677
    -18.254496   .6141079   .6556017   3.621024          .    2.724758
     1.8374982 -.06617339 -.55172414  -.0619852          .    .0795756
             .          .          .          .          .           .
    -4.0783553   .4024109  -.7314306          .          .           .
    -1.6217674 -.32730445   .2019673    .180073 -.50071394    -1.61082
     -86.59761  10.143427  -51.59363 -16.438248  -38.67117   -51.45112
     -2.735061 -1.1532638  -.8280346  .22673434   .2605753     -.92742
    -14.793185 -4.4003787 -1.0222434  -6.128727 -4.1609087  -16.701374
    -3.0228276 -.20291217 -1.6640676  -.8734617 -1.0164396   -.4866134
    -1.7216733   -.781592  -.4245499 -.09530534 -.12883869  -1.3026828
      10.36855  1.8317152  1.7037884  3.3721685  1.9920044   2.2752714
     -46.87265  -7.036164  -23.11635  -7.564466  -5.536163  -10.646227
    -3.5167906  -1.538027  -.5984936  -.4681452   .4634376   -.5372947
     -5.711639  -.7852045  -.7055998 -2.0178425   -1.29042   -2.957178
     -4.825659  -.5156987  -.2900993 -.57387906 -1.1099408  -1.8141237
             .          .          .          .          .           .
    -3.6560776  -.9525505  -1.439737          .          .           .
     -8.659256 -2.7453825  -2.680406 -1.8163843 -.04225166   -49.30666
     -13.79343 -3.8133025  -3.077289 -3.9057415  .03988668  -11.655645
       3.96079   .8199277   .8787896  1.0160346  .14157064   10.534456
     4.4662547   .9658501    .522075   .9011568  -.3416019    3.829076
      -116.618 -13.933278  -3.797648 -25.776865 -1.2605968     47.1314
    -10.641214  -.3875865  -1.456575  -1.422025  -.8170909     47.1314
      65.87167  13.612937  16.178404  3.6223264  -6.296296     47.1314
     -5.366004  -1.193489 -1.8047794 -1.0042331   .6500424  -16.476295
     10.031454  2.7066224 -2.5392585  1.7898717  -.6329824    3.522378
     -5.021983  1.1207652  -2.063936 -1.1946355 -1.5452136   20.093357
     -43.73012 -17.137478  -2.913917   9.306048   9.437182   -51.45112
             .          .          .          .          .           .
      3.390832 -2.1073005 -.09643464          .          .           .
     -4.929484  .13440607  -4.357785   2.937056  -1.968765    1.751065
     -177.2381        -68   -63.1746  4.5079365  -9.523816   -51.45112
       -3.9811 -1.3432332  -2.680391  -3.107661 -.43536955    .3732703
     -5.346325  -3.224523  2.3840845 -1.6159155  .17702003   -3.205846
     -4.880775  1.8972536  -6.927948 -2.5660744 -1.1121162    .8071082
     -69.57198        -68  17.789883   22.84825  36.183453   -51.45112
      5.203324  -1.266482    2.92964   5.939612   3.894737   -6.257064
      17.21183   8.454037   -3.97442  -3.654676  -15.69944   15.963228
      71.32001  -11.04889   19.75111  23.502224   2.560001   -41.24445
     -2.417216  -.6892594   .9774331   .3855758  .21015897   -.6264443
    end



  • #2
    Karim:
    welcome to this forum.
    You may want to try something alobg the following lines:
    Code:
    . forvalues i = 70(1)73 {
      2. quietly regress ln_wage c.age##c.age if year==`i'
      3. predict d, residuals
      4. g res_`i'=d
      5. drop d
      6. }
    Kind regards,
    Carlo
    (Stata 19.0)

    Comment


    • #3
      Hi Carlo

      Thank you very much for your help. I have edited the code as you suggested. Below is the edited code:

      Code:
      clear results
      estimate clear
      ereturn list
      
      levelsof Fama_French, local(industries)
      
      foreach Fama_French of local industries {
          qui levelsof year if Fama_French == `Fama_French', local(years)
          
          foreach year of local years {
              qui count if Fama_French == `Fama_French' & year == `year'
              local obs = r(N)
      
              if `obs' >= 20 {
                  qui reg TCA_W CFOt_1_W CFOt_W CFOt1_W C_Rev_W PPE_W if Fama_French == `Fama_French' & year == `year', robust
                  
                  predict double AQ, residuals 
                  g res_`obs'=AQ
                  drop AQ
                  }
          }
      }

      However, it shows the following error:

      Code:
      . 
      . levelsof Fama_French, local(industries)
      1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
      
      . 
      . 
      . 
      . foreach Fama_French of local industries {
        2. 
      .     qui levelsof year if Fama_French == `Fama_French', local(years)
        3. 
      .     
      . 
      .     foreach year of local years {
        4. 
      .         qui count if Fama_French == `Fama_French' & year == `year'
        5. 
      .         local obs = r(N)
        6. 
      . 
      . 
      .         if `obs' >= 20 {
        7. 
      .             qui reg TCA_W CFOt_1_W CFOt_W CFOt1_W C_Rev_W PPE_W if Fama_French == `Fama_French' & year == `year', robust
        8. 
      . 
      . 
      .             predict double AQ, residuals 
        9. 
      . g res_`obs'=AQ
       10. 
      . drop AQ
       11. 
      .             }
       12. 
      .     }
       13. 
      . }
      (51,222 missing values generated)
      (51,222 missing values generated)
      (51,222 missing values generated)
      (51,222 missing values generated)
      (51,222 missing values generated)
      variable res_29 already defined
      r(110);

      Comment


      • #4
        Sorry, I forgot to explain in my previous post that I am measuring the accrual quality of firms. The condition is that each industry should have at least 20 observations in a given year. The residual is my desired variable AQ (Accrual Quality) if the criteria are met. Is there any other way to do it?

        Comment


        • #5
          Each time around your loops you're trying to put residuals in a new variable with name dependent on the sample size. That's not necessary and it's going to fail the first time you see a sample size you've seen before.

          You can filter out subsets with less than 20 observations, but that still leaves the possibility that some subsets have missing values on any variable fed to the regression.

          A nuance here is that robust standard errors are immaterial if all you want are residuals.

          This may get you closer to what you want, but manifestly I can't check with your dataset.

          Code:
          bysort Fama_French year : gen N = _N 
          egen group = group(Fama_French year) if N >= 20 
          su group, meanonly 
          local G = r(max) 
          
          gen residuals = . 
          
          forval g = 1/`G' { 
              qui reg TCA_W CFOt_1_W CFOt_W CFOt1_W C_Rev_W PPE_W if group == `g'        
              if e(N) >= 20 { 
                  predict double AQ, residuals 
                  replace residuals = AQ if group == `g' 
                  drop AQ
              } 
          }

          Comment


          • #6
            Hi Nick

            Thank you very much for your help. I have tried your code and it shows the following error:

            Code:
             bysort Fama_French year : gen N = _N 
            
            . 
            . egen group = group(Fama_French year) if N >= 20 
            (1,407 missing values generated)
            
            . 
            . su group, meanonly 
            
            . 
            . local G = r(max) 
            
            . 
            . 
            . 
            . gen residuals = . 
            (108,371 missing values generated)
            
            . 
            . 
            . 
            . forval g = 1/`G' { 
              2. 
            .     qui reg TCA_W CFOt_1_W CFOt_W CFOt1_W C_Rev_W PPE_W if group == `g'        
              3. 
            .     if e(N) >= 20 { 
              4. 
            .         predict double AQ, residuals 
              5. 
            .         replace residuals = AQ if group == `g' 
              6. 
            .         drop AQ
              7. 
            .     } 
              8. 
            . }
            (51,222 missing values generated)
            (21 real changes made)
            (51,222 missing values generated)
            (22 real changes made)
            (51,222 missing values generated)
            (20 real changes made)
            (51,222 missing values generated)
            (23 real changes made)
            (51,222 missing values generated)
            (20 real changes made)
            no observations
            r(2000);

            I have supplied more data for your convenience to test your code. However, I understand that with that small data set, the condition of more than 20 will not work. if your code works, for example, with >=3, that will do for me. I can change that for my whole data set.

            Code:
            * Example generated by -dataex-. For more info, type help dataex
            clear
            input str10 cik byte Fama_French int year float(PPE_W CFOt_W CFOt1_W CFOt_1_W TCA_W C_Rev_W) int cid
            "0000001750" 42 2016 -75.281555 -2.1165047  -6.242719  -3.116505    -1.961165    -10.194175  1
            "0000001750" 42 2018 -2.0669277 -.23994306  .12851548  -.2289071   .016375937    -1.0804557  1
            "0000001750" 42 2020 -37.444443  -6.152047 -4.3976607   2.111111     6.122808     25.608187  1
            "0000001750" 42 2012 -24.948883  -5.204473  -4.466454  -3.010128    -.3389456    -2.9585304  1
            "0000001750" 42 2019   2.535138 -.13387725  .39013535  .24995366     .3371037     .13906917  1
            "0000001750" 42 2015   -23.5871 -1.0354838  -.7032258  1.3870968     1.016129    -2.2032259  1
            "0000001750" 42 2011  25.682127   3.207224   5.545249  3.6967645     3.083213     10.168536  1
            "0000001750" 42 2014  19.026062 -1.1796982   .8806584   3.835391      -3.8107    -12.090535  1
            "0000001750" 42 2017      141.6  17.146667  17.973333   5.813333     8.853333     -5.146667  1
            "0000001750" 42 2013   2.447334   .4084733 -.12563916  .47596785     .1154127     -.3859752  1
            "0000001750" 42 2010   -2.65431  -.4415217  -.3830536  -.6226791   .019210204    -1.7223364  1
            "0000001800" 12 2020  -15.02568  -5.967523  -7.955438  -4.634441     .3549849    -2.0422962  2
            "0000001800" 12 2021   54.13456   27.79156  25.279684  20.846966    .46701846      22.34037  2
            "0000001800" 12 2012  1.5590916   .7671875  .27378368   .7388269     .3937432      .0842314  2
            "0000001800" 12 2018   -43.9944 -17.647058 -17.187675  -15.60224    1.5658263     -8.929972  2
            "0000001800" 12 2015 -2.1688414 -.51948506  -.5609948  -.6436641     .3511691   -.027673176  2
            "0000001800" 12 2017   3.363446  1.2272778   1.388124   .7057398   -.06147406     1.4403437  2
            "0000001800" 12 2016 -1.0486771 -.27162483  -.4723541 -.25152645     .0234905    -.03799186  2
            "0000001800" 12 2014  305.26315   58.81108   60.55072   59.65454    -38.67117     -51.45112  2
            "0000001800" 12 2019  -7.609097 -2.6329114 -3.3902595 -2.7032826   -.27633554    -.56897664  2
            "0000001800" 12 2011  -5.178624 -2.5783305  -2.677302  -2.511043     .8482286    -1.0590719  2
            "0000001800" 12 2013   15.33969  3.9618595  4.3802147   11.10179   -.22992358    -21.484995  2
            "0000001961" 35 2017          0  .13326052  1.0322229   .3719279    .13489898             0  4
            "0000001961" 35 2012 -.24175824  11.384616    24.1978   12.57143    1.7142856             0  4
            "0000001961" 35 2011  .52380955 -27.238096  -24.66667  -6.809524    16.190477    -19.809525  4
            "0000001961" 35 2018          0 -1.8243243 -1.2760618 -.23552124     .6544401             0  4
            "0000001961" 35 2016          0  14.967033   5.362638   10.54945    -5.186813             0  4
            "0000001961" 35 2020          0  -5.303922  -6.970589  -6.480392     .3627448             0  4
            "0000001961" 35 2014          0        -68 -66.217766 -68.180984    -38.67117             0  4
            "0000001961" 35 2019          0  -2.443623         -2 -3.4935305     .8724584             0  4
            "0000001961" 35 2013          0  -7.339999  -.6333333  -3.453333   -1.9866667             0  4
            "0000001961" 35 2015          0  14.328358   20.32836   2.835821    1.8805977             0  4
            "0000001961" 35 2021          0 -10.304348  -6.014493   -7.84058   -1.0289855             0  4
            "0000002034" 42 2016  -.0832638 -.12798774  -.1791973 -.03354597    -.1030826    -.04653332  5
            "0000002034" 42 2014 -1.9002293 -2.2997704  -.7657641 -2.1781552   -1.5053694     -.9627352  5
            "0000002034" 42 2017  .15898304   .3287125   .7508897  .23477563     .1505526      .5885359  5
            "0000002034" 42 2013 -.25779983  -.3283341  -.3466663 -.18358538   -.09265739     -.7651396  5
            "0000002034" 42 2012  -1.471801  -1.098882 -1.9653003 -1.1625673   -.59354043     -2.646791  5
            "0000002034" 42 2015  -.7845659  -.3271508 -1.2481766  -.9825112   -1.4983138     -1.441926  5
            "0000002034" 42 2011   2.792249  2.2669358  2.1427534  -2.502866     .4744449     10.625272  5
            "0000002098" 17 2020  -5.711639  -.7852045  -.7055998 -2.0178425     -1.29042     -2.957178  7
            "0000002098" 17 2014 -14.793185 -4.4003787 -1.0222434  -6.128727   -4.1609087    -16.701374  7
            "0000002098" 17 2017   10.36855  1.8317152  1.7037884  3.3721685    1.9920044     2.2752714  7
            "0000002098" 17 2013  -2.735061 -1.1532638  -.8280346  .22673434     .2605753       -.92742  7
            "0000002098" 17 2011 -1.6217674 -.32730445   .2019673    .180073   -.50071394      -1.61082  7
            "0000002098" 17 2019 -3.5167906  -1.538027  -.5984936  -.4681452     .4634376     -.5372947  7
            "0000002098" 17 2018  -46.87265  -7.036164  -23.11635  -7.564466    -5.536163    -10.646227  7
            "0000002098" 17 2015 -3.0228276 -.20291217 -1.6640676  -.8734617   -1.0164396     -.4866134  7
            "0000002098" 17 2016 -1.7216733   -.781592  -.4245499 -.09530534   -.12883869    -1.3026828  7
            "0000002098" 17 2012  -86.59761  10.143427  -51.59363 -16.438248    -38.67117     -51.45112  7
            "0000002098" 17 2021  -4.825659  -.5156987  -.2900993 -.57387906   -1.1099408    -1.8141237  7
            "0000002178" 42 2014  4.4662547   .9658501    .522075   .9011568    -.3416019      3.829076  8
            "0000002178" 42 2017   65.87167  13.612937  16.178404  3.6223264    -6.296296       47.1314  8
            "0000002178" 42 2018  -5.366004  -1.193489 -1.8047794 -1.0042331     .6500424    -16.476295  8
            "0000002178" 42 2021  -43.73012 -17.137478  -2.913917   9.306048     9.437182     -51.45112  8
            "0000002178" 42 2015   -116.618 -13.933278  -3.797648 -25.776865   -1.2605968       47.1314  8
            "0000002178" 42 2012  -13.79343 -3.8133025  -3.077289 -3.9057415    .03988668    -11.655645  8
            "0000002178" 42 2020  -5.021983  1.1207652  -2.063936 -1.1946355   -1.5452136     20.093357  8
            "0000002178" 42 2019  10.031454  2.7066224 -2.5392585  1.7898717    -.6329824      3.522378  8
            "0000002178" 42 2013    3.96079   .8199277   .8787896  1.0160346    .14157064     10.534456  8
            "0000002178" 42 2016 -10.641214  -.3875865  -1.456575  -1.422025    -.8170909       47.1314  8
            "0000002178" 42 2011  -8.659256 -2.7453825  -2.680406 -1.8163843   -.04225166     -49.30666  8
            "0000002186" 37 2012  -177.2381        -68   -63.1746  4.5079365    -9.523816     -51.45112  9
            "0000002186" 37 2015  -4.880775  1.8972536  -6.927948 -2.5660744   -1.1121162      .8071082  9
            "0000002186" 37 2016  -69.57198        -68  17.789883   22.84825    36.183453     -51.45112  9
            "0000002186" 37 2017   5.203324  -1.266482    2.92964   5.939612     3.894737     -6.257064  9
            "0000002186" 37 2019   71.32001  -11.04889   19.75111  23.502224     2.560001     -41.24445  9
            "0000002186" 37 2018   17.21183   8.454037   -3.97442  -3.654676    -15.69944     15.963228  9
            "0000002186" 37 2013    -3.9811 -1.3432332  -2.680391  -3.107661   -.43536955      .3732703  9
            "0000002186" 37 2020  -2.417216  -.6892594   .9774331   .3855758    .21015897     -.6264443  9
            "0000002186" 37 2014  -5.346325  -3.224523  2.3840845 -1.6159155    .17702003     -3.205846  9
            "0000002186" 37 2011  -4.929484  .13440607  -4.357785   2.937056    -1.968765      1.751065  9
            "0000002186" 37 2021   22.02833  -8.115905  -11.59047   5.723116    10.189312     1.5775918  9
            "0000002488" 37 2013   6.080702 -.51929826  -.3438596  -1.185965     .4666667     -.4315789 11
            "0000002488" 37 2021 -.07987528 -.12766266 -.12925799 -.03883178 -.0006888925     -.2418738 11
            "0000002488" 37 2020 -1.0188024  -.6196124 -2.0370264  -.2852184    -.7850738     -1.754122 11
            "0000002488" 37 2019   -1.00409    -.33606  -.7300614 -.02317655   -.13701431     -.1745058 11
            "0000002488" 37 2012 -13.163205  2.0059347   .8783383 -2.2670624     4.456973      6.801187 11
            "0000002488" 37 2015  -9.283019  2.1320755  -.8490566   .9245283    2.8867924     14.292453 11
            "0000002488" 37 2018  -1.433424 -.04619565  -.6698369  -.0923913    -.8057065    -1.5570652 11
            "0000002488" 37 2011  4.6037736   .8008386  -.7085954  -.8637317    -.9895178     .15513627 11
            "0000002488" 37 2014   5.106383 -.29787233  -.6869301   -.449848     .6413374      .6291794 11
            "0000002491" 23 2012  -90.13116  -29.77563  -46.68606 -12.810411     2.488975     -27.64355 12
            "0000002491" 23 2013  -.5444254 -.26679552 -.28823432 -.17015795    .03027256     -.1523566 12
            "0000002491" 23 2011  -16.60734 -2.6166275  -6.081907  -5.555313    -2.901075      .9303275 12
            "0000002668" 35 2011 -28.995634  -.7323768 -1.1391141  -.3447702     -.669162      .3797047 13
            "0000002668" 35 2016  16.611492   .6483705   2.616638   4.576329     .7907376    -1.1363636 13
            "0000002668" 35 2012  -215.6667  -8.376147 -12.440367  -5.385321   -1.3730887     -7.186544 13
            "0000002668" 35 2017 -10.778906 -1.7208122  -.3384095  -.4263959     .5927806     1.0208685 13
            "0000002668" 35 2019  -4.991545 -1.0996535  .15051974 -.16632017   -.24532223    -1.4819127 13
            "0000002668" 35 2013 -133.85384  -7.526364  -3.450509   -5.06753   -.14616093      -3.59852 13
            "0000002668" 35 2015 -287.27307        -68 -13.745454 -33.909092    36.183453       47.1314 13
            "0000002668" 35 2018   54.00592   1.775148  11.736687   9.026628     7.233727     13.378697 13
            "0000002668" 35 2014  10.266603   .8910655  2.5494506  1.9436216     .8313426      1.916866 13
            "0000002809" 28 2019 -29.269627  -2.137772  -2.890283  -1.468474   -.14457308     -.7362881 14
            "0000002809" 28 2016 -23.437164 -2.0553474  -2.026152 -1.6267087     .0416525     -.4033525 14
            "0000002809" 28 2011  -41.83615  -5.988464  -6.282219 -4.3638415   -1.0182688    -3.6039174 14
            "0000002809" 28 2013  -5.359521  -.4659801  -.7105374   -.739969   -.13355772     .29694995 14
            "0000002809" 28 2015  -44.59548  -2.901507 -3.6660554 -3.1467495     .2749152     -.4174767 14
            "0000002809" 28 2014   113.8417   8.494312   7.832305   5.570686    .11527848      3.283722 14
            "0000002809" 28 2021  -2.113894  -.1977744  -.3150933 -.17914805   -.03951929    -.10306032 14
            "0000002809" 28 2018   -24.0235  -1.292685 -1.8818623 -1.6382554    .18581022     .10967065 14
            "0000002809" 28 2020  -45.48166 -4.1678677 -4.6012087  -3.082726    .42272225     -2.248942 14
            "0000002809" 28 2012    33.7968   4.695089   2.956635  4.4755483    -.3863223      .6470186 14
            "0000002809" 28 2017  305.26315   58.81108   60.55072   59.65454     15.07023     16.361813 14
            "0000002969" 14 2021 -168.29634  -20.04739 -19.377325 -19.584284    -.6610677      -8.79844 15
            "0000002969" 14 2012  -39.73621 -3.9605856  -3.451283 -3.8603985     .1779148      1.035561 15
            "0000002969" 14 2018    182.507   21.58726   25.22208    13.3155   -2.2165606      6.306581 15
            "0000002969" 14 2019  -7.174679  -.9540774 -1.0487816  -.8165828   -.07510802    .003630114 15
            "0000002969" 14 2015  -65.95787  -7.899546  -8.514257  -7.087168     .9818533     1.7631236 15
            "0000002969" 14 2016  -98.03399  -12.75795  -7.613013 -11.836854     .7108523     1.7989804 15
            "0000002969" 14 2020 -30.227716 -3.8619506  -3.953274  -3.513219   -1.0839298     .07405217 15
            "0000002969" 14 2013  305.26315   44.15211   60.55072    50.6676  -.022535404     16.019718 15
            "0000002969" 14 2014   118.6129  12.827566  14.297948   9.192962     1.822874     1.5167155 15
            "0000002969" 14 2011  -12.99619 -1.3226207  -1.356946 -1.1485044    -.1328505     -.7966504 15
            "0000002969" 14 2017  -54.97905 -4.4097877  -7.149205  -7.389959     .4649137      3.759809 15
            "0000003116" 13 2013 -.18517847 -.07772511 -.04191998 -.03558277  .0016297246    -.08345627 16
            "0000003116" 13 2011 -2.8019545  -.7370394  -.8408843  -.3935277   -1.0781159    -1.6184237 16
            "0000003116" 13 2015   3.837686  4.2830133   2.413972   .4448953    -1.059659      5.640665 16
            "0000003116" 13 2016  10.803127   5.225405   7.764145   9.271224     2.591257     4.1043158 16
            "0000003116" 13 2012 -4.1232004  -.8433161  -1.842095   -.739171    -.9941195     -3.831555 16
            "0000003116" 13 2014  -2.059006  -.3004533  -2.892468  -.5570796   -2.2010796     -2.675947 16
            "0000003116" 13 2018   4.778645  -.6668732  -.3573648  2.4128006   -.02724829     -1.423177 16
            "0000003116" 13 2017  2.1447325  1.2034357  -.3326172   .8099331    -.5723107    -1.3315406 16
            "0000003124" 14 2020  121.45265   29.46728  13.798925  .51845527    -2.707598    -2.5596144 17
            "0000003124" 14 2019  -8.523095 -.03931601  -2.234592 -15.917547      8.90437     .28608227 17
            "0000003124" 14 2013  11.069913   1.602164   .7371711    .748548   -.20712693     -.1574354 17
            "0000003124" 14 2015   97.83652  10.147393  11.355577   7.274383   -1.6955818     -9.534707 17
            "0000003124" 14 2014  10.519755    .743524  1.0371782  1.6159716    -.7634621    -2.3472068 17
            "0000003124" 14 2017  -5.277472 -1.1457518 -10.162077 -1.3483976   -2.5145924      3.330923 17
            "0000003124" 14 2018  1.4774817   3.013403 .007443042  .33975455    1.0704827    -.27637392 17
            "0000003124" 14 2011  11.721398   .4171141    .863065  2.0493531    -.7296121      .8974958 17
            "0000003124" 14 2021  305.26315   46.61046  18.419052   59.65454     28.55557      42.17662 17
            "0000003124" 14 2016 -10.377683 -1.1754398  -.9987872 -1.0503782    -.0901019      .9789142 17
            "0000003124" 14 2012   16.53171  1.1616676    2.48639  .56142694     .3492701     -.0907571 17
            "0000003146" 32 2015   -45.1678  -2.739427 -2.6793995   -3.13779    -.6357435     -1.691678 18
            "0000003146" 32 2018 -30.836735 -2.2935636 -2.2150707 -1.3265306     .4191523    -1.5729984 18
            "0000003146" 32 2011  -168.9806 -13.302812  -5.318114 -11.748445   -.06232887     10.552252 18
            "0000003146" 32 2013 -13.167933 -1.1491977 -1.0153404  -.3774153     .2842159     -.7217658 18
            "0000003146" 32 2016   -68.2288  -3.873767  -3.333333  -3.960552   -1.0059172     4.3668637 18
            "0000003146" 32 2017  137.16418    6.30597  10.902986   7.328358     3.544777       2.38806 18
            "0000003146" 32 2020  -41.58858 -2.3627205  -2.290512 -2.3694377     .3123426      .1763224 18
            "0000003146" 32 2021  -21.72087  -1.143336 -.14417435 -1.1793797   -.02766136    -.32690695 18
            "0000003146" 32 2012 -186.40567  -5.624975 -17.127573   -14.0704      -7.1281     10.969668 18
            "0000003146" 32 2014  -32.31144  -2.436441 -2.1271186  -2.757648     1.674788      2.460551 18
            "0000003146" 32 2019 -13.892138  -.9168292    -.91423  -.9493178   .018193632     .22871996 18
            "0000003153" 32 2018 -26.291494 -1.5532618  -1.469034 -1.5169282     .1849711    .005780347 19
            "0000003153" 32 2019  -37.97093 -2.1550574 -2.1102362  -2.278619   -.11508177      -.112659 19
            "0000003153" 32 2013  -35.62183  -2.942352   -2.62721  -2.115296     .4043044    -.15065335 19
            "0000003153" 32 2017  -19.93929  -1.281926  -1.312631 -1.3600837  -.009769714     -.1046755 19
            "0000003153" 32 2020 -30.383663 -1.5988985 -1.8843507  -1.632859    .04864617      .2707664 19
            "0000003153" 32 2014  -41.80325 -2.9238665  -3.664671 -3.2745936   -.11291702     -.5543199 19
            "0000003153" 32 2021 -34.846077 -2.0653923 -1.6488934  -1.752515    .12877263     -.5865191 19
            "0000003153" 32 2016  -39.84866 -2.8916914  -2.725519 -3.1780415    .24332345    -.17952523 19
            "0000003153" 32 2012  -82.37106  -5.105752  -7.102041  -7.599258    -.9239332      .6753247 19
            "0000003153" 32 2011 -183.08936 -17.429787 -11.710638 -11.685106    2.4340425      2.331915 19
            "0000003153" 32 2015  -65.19245  -5.388679  -4.903145 -4.2993712           .8      .4377359 19
            "0000003197" 21 2017   1.947397  .28585726     .95512   3.028216     .7785151     -3.130942 20
            "0000003197" 21 2018  -5.613827    -2.7346 -1.2739956  -.8184366    4.7094364      .9606976 20
            "0000003197" 21 2011 -2.1155906 -1.1840911 -2.2805068  -.3981299   -.13198726     .19106986 20
            "0000003197" 21 2012 -.11945038 -.13228682  -.1900783 -.06868633    .02633317    .032543074 20
            "0000003197" 21 2015  1.2498877   .2522733  1.3894097   .3246594    .16852823     2.0802517 20
            "0000003197" 21 2019  -9.018826 -1.9157068  -.8281353  -4.112016   -3.5315166      -.848553 20
            "0000003197" 21 2013 -1.0321894   -.734661  -.4940983  -.5112944   -1.1822449    -1.8917193 20
            "0000003197" 21 2020   29.45717   2.836702   8.532563   6.562079      6.26179    -16.591595 20
            "0000003197" 21 2021 -1.0781934  -.3004383  -.6698523 -.09988251   -.08015905     -.1836564 20
            "0000003197" 21 2014  -.3706724 -.17633666 -.13702062 -.26219004   -.04815293     -.7145413 20
            "0000003197" 21 2016  1.4553716  2.3166847   .2186902   .4206374   -1.0049096     1.6506283 20
            "0000003270" 32 2019 -152.05205  -7.949917  -8.703789 -10.546292     2.542339      .4395387 21
            "0000003270" 32 2020  -38.97832  -2.136871 -3.1145444 -1.9517877    -.8611875   -.026047563 21
            "0000003270" 32 2018   206.8317   14.40504  10.858686   15.57876   -.07740777     -.3384339 21
            "0000003453" 41 2013  -23.38502  -2.549837 -2.1589577  -.8351792   -.11856683    -1.0058632 22
            "0000003453" 41 2016 -18.550861  -1.360345  -1.938793 -2.1146553    -.3112069     -.4887931 22
            "0000003453" 41 2014 -13.419403  -1.236567  -1.830597 -1.4604478    .16492528    -.57462686 22
            "0000003453" 41 2015 -11.506508 -1.4191495  -.9129303  -.9586346    .27422625     -.9875614 22
            "0000003453" 41 2018 -12.603374 -1.4698795  -1.199036 -1.0838554     .0992771     -.8477108 22
            "0000003453" 41 2021  -11.05982  -3.090281 -3.9940336 -1.3496623    -.3162192     -4.842204 22
            "0000003453" 41 2019 -112.05797  -9.014493 -15.572463 -11.050724     .8478261      .7137681 22
            "0000003453" 41 2017  -26.72717 -2.4592674  -3.335156  -1.725533     .2427556     -1.151449 22
            "0000003453" 41 2020  -7.984101 -1.0846688  -2.483533  -.6278864    .08858044     -.4547634 22
            "0000003453" 41 2011  4.5338397  .12557495  .09359714  .21902607  -.008761043      .1109732 22
            "0000003453" 41 2012  -47.85946 -1.7324324  -5.289189 -2.3243244   -.27567565     4.3783784 22
            "0000003545"  1 2021    41.7799  1.3775144  .54444534   .0875553   -.07561972     1.3402053 24
            "0000003545"  1 2015  305.26315   35.31387   31.65485  30.085505    -24.37956       47.1314 24
            "0000003545"  1 2017  -203.6698 -13.315567  -8.988208  -14.31934     .4113208      6.776887 24
            "0000003545"  1 2012  -27.33939 -3.4359236  -1.951879  -2.434688    -.7212328    -4.1571565 24
            "0000003545"  1 2020  -100.4903  -.2260776  -3.556897 -10.524138    -3.771767      6.410345 24
            "0000003545"  1 2019 -137.36967 -14.912812  -.3203543  -5.819209    3.3663156    -12.511835 24
            "0000003545"  1 2013   -85.8591  -5.680558 -12.207318  -9.999577    -.6189972     10.800084 24
            "0000003545"  1 2014 -1.1708591  -.2245178 -.26353532  -.1044772   -.32787445     .10101435 24
            "0000003545"  1 2018   143.2751   6.315877  16.185616   9.356646    -6.928737    -16.091482 24
            "0000003545"  1 2011  -76.81617  -6.635103 -9.3637085  -2.818146    .23256737     -7.448494 24
            "0000003545"  1 2016   23.42295   1.537842  1.4300406   1.715603     .4082067     -.4520264 24
            "0000003570" 31 2019 -287.27307 -17.882927 -12.341463 -19.414635    16.087805    -17.004879 25
            "0000003570" 31 2021  -36.34263 -2.4591634 -10.481075   -1.25996   .017928287      -6.48008 25
            "0000003570" 31 2011  -2.682499  .04961712  .12512182 .019631503  -.017335406    .001240312 25
            "0000003570" 31 2012 -1.4090585  .04284336  .02083211 .016989555   -.13787149    .009623866 25
            "0000003570" 31 2017 -12.225435  -.6032835  -.9752511  .19791326    -.4227983    -2.1160662 25
            "0000003570" 31 2015  -7.131934  .11343738  .17246605  .05300666     .0893561   -.001251722 25
            "0000003570" 31 2016 -10.113327   .1921564  -.5857354  .12638848   -.22063573     -.4816648 25
            "0000003570" 31 2020  -19.25639  -.7104746 -1.3866892 -1.0294861    .12412244     .20893008 25
            "0000003570" 31 2018 -16.351498 -1.1355207 -1.0459344  -.7024251   -.20199715    -1.3614836 25
            "0000003570" 31 2014  -2.987142  .03851096  .08241573 .016269552    .03552891 -.00022991338 25
            "0000003570" 31 2013   -4.67487   .0361572  .08558615 .074360974 -.0043014223  -.0006847223 25
            "0000004127" 37 2015 -23.314707      -14.6 -16.113235 -11.358824   -1.1970587    -14.219118 29
            "0000004127" 37 2021 -27.383257 -12.518544 -10.064288   -8.50936   -.18579985    -12.387142 29
            "0000004127" 37 2014  -3.157457 -2.0718884   -2.66309  -1.340397    .15209234    -1.3398606 29
            "0000004127" 37 2011  -5.467767  -2.971026 -2.3165963 -1.8108075  -.024007434     -2.818787 29
            "0000004127" 37 2017 -16.130043 -11.526048  -9.875441  -8.583627     .6196633     -2.839013 29
            "0000004127" 37 2013 -2.6823785 -1.5598564  -2.411113   -.890398    .03704077     -.6974216 29
            "0000004127" 37 2020  -1.921814  -.6914466 -1.0172216  -.7849599   -.18450058    .012112514 29
            "0000004127" 37 2019  -21.59416 -10.238862 -9.0190935  -9.439161     .9726694      3.678023 29
            "0000004127" 37 2012  -7.682084  -2.903876  -5.087196   -3.72421   -2.1290073    -1.5236034 29
            "0000004127" 37 2016  -4.922863  -3.051239 -4.0971875 -2.7646894    -.8379281    -.08521304 29
            "0000004127" 37 2018 -287.27307        -68 -66.217766 -68.180984    -38.67117     -40.48598 29
            "0000004164" 19 2011  -53.81481        -68 -1.4444444 -21.962963    36.183453     -51.45112 30
            "0000004187" 32 2013   15.48478   1.769625 -.19192566   1.516501    -3.857417    -18.416853 31
            "0000004187" 32 2011   5.531025  2.1537938   .5364084  -.6600555   -2.0041933     -7.495439 31
            "0000004187" 32 2012   5.024726   .4906951   .5725986   1.970245     -.425276     -8.567518 31
            "0000004187" 32 2015   -55.9789  -9.582278  4.6554146   .8424753    17.261604       47.1314 31
            "0000004187" 32 2016  -80.97131   6.547972   2.698318 -13.477745    -8.259149     19.139465 31
            "0000004187" 32 2017   -133.354   4.450245   .3164764  10.799348    -8.182709     -51.45112 31
            "0000004187" 32 2014   5.187405 -.06526476   .7423186    .601765   -.04183919    -2.1081934 31
            "0000004281" 25 2019  4.1691933  .13235533 .002933985 .070741646  -.014669927     .04563977 32
            "0000004281" 25 2021 -287.27307 -24.944445  -40.72222        -.5     .7777778     15.944445 32
            "0000004281" 25 2020   8.740196 .014705882   .7336601   .6633987    -.5833333    -14.596405 32
            "0000004281" 25 2017  305.26315      56.08      17.36   59.65454         9.76         45.28 32
            "0000004281" 25 2018  22.373095   .3892377   .7282511   1.257399    -.4017937     1.9587444 32
            "0000004281" 25 2016  17.533333   1.318182  1.0621212    2.39697    -.1530303    -.02878788 32
            "0000004447" 31 2020 -36.785126   -1.57379 -3.4120426  -1.938607    -.6021252     2.1582055 33
            "0000004447" 31 2016  17.029224  .28861862    .343075   .7191868    .09402795     -.6803412 33
            "0000004447" 31 2015  16.801579   .7108002  .28525296  1.6017222   -.11266595    -1.4714746 33
            "0000004447" 31 2018 -190.38396 -11.111748  -9.409742  -5.415473    -.9971347     -4.911175 33
            "0000004447" 31 2019    24.7538  1.1090847   .9003715  1.3096926   -.22222222     .11617697 33
            "0000004447" 31 2013  22.006704  2.3323755   2.137931   2.710728     .2179119     -7.378831 33
            "0000004447" 31 2011 -18.448317  -2.315447 -2.6295006 -2.1045296     -.155633    -2.1389081 33
            "0000004447" 31 2014   21.22838   2.036961   .9039471  2.2222223    -.5224732     -5.268994 33
            "0000004447" 31 2012  132.61426  16.477438  14.177584   14.50946     .6113537    -2.2561862 33
            "0000004447" 31 2021      -53.8  -4.898305  -6.684746  -2.259322    1.0762712    -4.7559323 33
            "0000004447" 31 2017   38.71828  1.1256701   2.309708   .9469923    .05955926      .8385944 33
            "0000004515" 41 2015  -10.48713  -.6760747   -.457337  -.3859924   -1.0895073       -3.6438 35
            "0000004515" 41 2012  -20.33816  -.9778535  -.8083475  -.5936968     .6260647     -.7027257 35
            "0000004515" 41 2019   46.10841  1.8160747 -1.0684112  1.4527103     .5203738      .9203739 35
            "0000004515" 41 2013  -71.71471 -2.7911766 -4.3441176 -3.3764706    -4.035294    -2.6588235 35
            "0000004515" 41 2020  -57.78342   1.480829 -3.3056996 -2.5170984    .03108808     29.456995 35
            "0000004515" 41 2017  -9.058715 -.52825326  -.3576293 -.32210565   -.08374747     -.3740107 35
            "0000004515" 41 2018 -118.61067  -3.839921  -4.800395  -5.671937   -1.3221344    -4.6146245 35
            "0000004515" 41 2016  -46.65625 -1.8229166  -2.989583 -2.6947916    -4.772917       .959375 35
            "0000004515" 41 2011  150.69539   4.289231   7.064615   6.461538   -1.0276923     11.384615 35
            "0000004515" 41 2021   133.5274   7.771011   3.237515 -3.4811206     2.674787     30.560293 35
            "0000004515" 41 2014 -2.3183832 -.12233404  -.2142709  -.0786019    .10171036    -.11695035 35
            "0000004611" 39 2011  -23.36304  .09366007 -1.7514607  -.4848696    -.1145897    -1.2392082 36
            "0000004828"  2 2012  -58.95237 -1.5087855  -4.409863 -2.1667798   -2.2017667      2.472847 37
            "0000004828"  2 2011 -137.67923  -5.221541  -3.635896 -14.912366    -6.142423     -31.71104 37
            "0000004904" 32 2021  -30.12902 -1.3239436  -1.823228   -1.32153     -.431741     -.6459565 38
            "0000004904" 32 2014  -62.73352  -4.500268  -4.700746  -4.005658     .1834057    -1.6223598 38
            "0000004904" 32 2019 -32.931038  -1.755473 -1.5757364 -2.1473002    .26080704     .26076588 38
            "0000004904" 32 2020   -24.6486 -1.1091369 -1.1111625 -1.2356508    -.1841279     .18603776 38
            "0000004904" 32 2018  -20.61787  -1.473503 -1.2046266 -1.2047112    .09126172    -.21744834 38
            "0000004904" 32 2015  -73.38496   -5.40009  -5.064776  -5.169786     .8881542      .6352124 38
            "0000004904" 32 2011  -51.93097  -3.533582 -3.5485075  -2.483209     .3992537     -.6427239 38
            "0000004904" 32 2017 -33.104305 -2.0965707  -2.564352  -2.218769     .8647176      .4689594 38
            "0000004904" 32 2016   -98.3615   -7.16553  -6.770889  -7.639924    -2.321706     .11590296 38
            "0000004904" 32 2012  -56.13483 -3.7166586 -4.0117245  -3.701026   -.20127015     .16707377 38
            "0000004904" 32 2013  -37.45573  -2.551103 -2.8661075  -2.363467    .13482448     -.2559801 38
            "0000005117" 36 2011   .7697681  .13666332  .15264376  -.1133476    -.3687727    -1.0876304 43
            "0000005133"  8 2011  -52.98856  -6.855378  -9.574635 -10.576722    -2.709021      -6.03406 44
            "0000005133"  8 2010 -287.27307        -68 -66.217766 -68.180984      9.97201      39.08804 44
            "0000005337" 39 2014  -40.24112  -1.378985  -3.038756 -2.8467996    .10805554      4.496045 46
            "0000005337" 39 2012   59.74518   3.001374   3.897705  4.0793037     .1889291  -.0020825523 46
            "0000005337" 39 2013   25.11018  1.5387145   .7453508   1.184866     .4711512     -.2135587 46
            "0000005337" 39 2011  -118.7518  -8.467191  -6.229791   -9.40797     .8519064     -37.10141 46
            "0000005656" 28 2013   7.505618  -.9887641 -.27715358 -3.3220975    -.4119851      .8576779 48
            "0000005656" 28 2014  -50.62295  2.4262295  -11.90164   8.655738     .9508195      5.704918 48
            "0000005656" 28 2016  10.925208 -1.7451524 -.59279776  2.0110803     .5872576      .9362881 48
            "0000005656" 28 2015  -6.928417 -1.5748373  1.3665943   .3210412     -.208243      .2386117 48
            "0000005768" 12 2012   7.520517  3.9097755   4.084076   6.402184     -8.56268    -2.1172042 49
            "0000005768" 12 2013   1.705178   .8990235 -.30761155    .860655    -.6989489     .09858707 49
            "0000005768" 12 2014  4.5403357 -1.0179625   .7642031  2.9750905    -4.987065     -5.804562 49
            "0000005768" 12 2010   8.789649   5.671535   8.714494   7.904347     .5809206      6.231617 49
            "0000005768" 12 2011   2.606781  2.3502395  1.4352773  1.5295743     1.566335     -3.456053 49
            "0000005981" 14 2016  -2.528854   -.878602 -1.1170623 -1.4875232     .6238024     -.4303647 50
            "0000005981" 14 2019 -31.900736 -1.8446298 -17.498383  -2.225797    -7.335361     -2.729573 50
            "0000005981" 14 2014   8.993048 -2.3012285   5.302916 -.41941145     4.629725     -5.560678 50
            "0000005981" 14 2013  -10.21603   .4830535    2.65042  -3.142413     -3.57416    -1.1529074 50
            "0000005981" 14 2017 -4.6360893 -2.0346928  -.3912751 -1.6003448    .16511767    -1.4806104 50
            "0000005981" 14 2018  -3.619114 -.29658478  -.2457947  -1.542288     -1.07561    -2.5937445 50
            "0000005981" 14 2012  -4.885454  -1.700166  .26135048 -1.6514624    -.3197695     -2.597565 50
            "0000005981" 14 2011  -3.504848  -1.292729  -1.330853 -1.0926929   -.13455369     -2.462888 50
            "0000005981" 14 2015   20.55378   11.56858   6.832952  -5.020246    -6.759921     -1.362291 50
            "0000006176" 20 2012   19.80312   1.668131   2.476496   1.461155    .18258697      -3.40333 52
            "0000006176" 20 2014   21.17575    1.32053   1.355568   2.497207    -.5641754    -.54156613 52
            "0000006176" 20 2016  305.26315  -38.85517 -66.217766   59.65454    36.183453       47.1314 52
            "0000006176" 20 2015  -10.96516  -.6865551  .18863943  -.6688095      .349589     1.1510555 52
            "0000006176" 20 2019    19.1229  -.3274128   1.551716  -.3102048    .04867144     -.9931722 52
            "0000006176" 20 2017  -157.0116   5.738768   2.436232  2.0413043   -10.432247    -36.425728 52
            "0000006176" 20 2018   12.95937  -.2083056  -.2198609   -.490683    -.3739525      -.401772 52
            "0000006176" 20 2021  -51.60413   1.851126  3.1744254  -3.924279   -1.2598298    -1.9106288 52
            "0000006176" 20 2013 -18.626987  -2.239388 -1.1841949 -1.5084183     .5968105        .70281 52
            "0000006176" 20 2011 -287.27307 -28.813187 -32.894634  -55.52812   -15.503555     -23.18035 52
            end

            Comment


            • #7
              Hi Nick

              Just to follow up, the following code is working with my dataset.

              Code:
              bysort Fama_French year: gen N = _N
              egen group = group(Fama_French year)
              su group, meanonly
              local G = r(max)
              
              gen residuals = .
              
              forval g = 1/`G' {
                  display "`g'"
                  qui count if group == `g'
                  if r(N) >= 20 {
                      qui reg TCA_W CFOt_1_W CFOt_W CFOt1_W C_Rev_W PPE_W if group == `g'
                      predict residuals_temp, residuals
                      replace residuals = residuals_temp if group == `g'
                      drop residuals_temp
                  }
              }

              Comment

              Working...
              X