Dear all,
I'am trying to run this code:
reg outcome i.post i.cell i.data_periods i.post#i.data_periods treated if split_var==1,
estimates store A
reg outcome i.post i.cell i.data_periods i.post#i.data_periods treated if split_var==0,
estimates store B
suest A B, cluster(double_cluster)
test [A_mean]treated=[B_mean]treated
Sorry if don't usa dataex but the code takes half an hour to work. At the suest point it reminds me the error "Variance matrix highly asymmetric or non-singular". I read a lot of previous posts on this issue but no one seems my problem. I attached with dataex my data.
I'am trying to run this code:
reg outcome i.post i.cell i.data_periods i.post#i.data_periods treated if split_var==1,
estimates store A
reg outcome i.post i.cell i.data_periods i.post#i.data_periods treated if split_var==0,
estimates store B
suest A B, cluster(double_cluster)
test [A_mean]treated=[B_mean]treated
Sorry if don't usa dataex but the code takes half an hour to work. At the suest point it reminds me the error "Variance matrix highly asymmetric or non-singular". I read a lot of previous posts on this issue but no one seems my problem. I attached with dataex my data.
Code:
* Example generated by -dataex-. For more info, type help dataex clear input byte outcome float(post data_periods treated cell individual_id cluster_var split_var) 4 0 1 0 1 311 770 1 4 0 1 0 2 405 995 1 1 0 1 0 3 28 73 1 6 0 1 0 3 478 1170 0 6 0 1 0 4 434 1064 1 2 0 1 0 5 92 227 0 2 0 1 0 6 365 900 0 1 0 1 0 6 63 160 1 5 0 1 0 6 117 287 1 4 0 1 0 7 125 311 0 3 1 1 1 8 242 605 1 1 0 1 0 8 175 417 1 4 0 1 0 9 512 1249 1 1 0 1 0 10 158 375 0 9 0 1 0 11 352 868 1 0 0 1 0 11 106 258 0 1 0 1 0 12 297 730 0 3 0 1 0 12 121 300 0 0 0 1 0 13 237 591 1 2 0 1 0 14 109 266 0 1 0 1 0 14 215 533 1 0 0 1 0 15 364 897 0 3 1 1 1 16 254 627 1 1 0 1 0 17 130 323 1 0 0 1 0 17 207 507 1 5 1 1 1 18 417 1022 0 1 0 1 0 19 34 88 0 1 0 1 0 20 456 1117 1 1 0 1 0 21 421 1033 0 4 0 1 0 22 47 121 0 0 1 1 1 23 238 594 1 0 1 1 1 24 319 789 0 1 0 1 0 25 429 1052 1 1 1 1 1 26 261 645 1 5 0 1 0 26 443 1085 1 3 0 1 0 27 16 39 1 2 0 1 0 28 218 542 0 2 0 1 0 29 146 356 0 0 0 1 0 30 60 155 0 1 0 1 0 31 373 918 1 1 0 1 0 32 82 200 0 0 0 1 0 33 96 235 0 2 0 1 0 33 455 1116 0 2 0 1 0 33 252 625 1 0 0 1 0 34 282 695 0 0 0 1 0 35 153 366 1 1 0 1 0 36 99 242 1 0 0 1 0 36 241 602 1 1 0 1 0 36 317 784 0 2 0 1 0 36 262 647 1 1 0 1 0 37 320 791 0 4 0 1 0 37 186 443 1 4 0 1 0 37 280 690 1 1 0 1 0 37 151 363 1 1 1 1 1 37 303 751 1 0 0 1 0 37 189 448 1 1 1 1 1 37 314 778 1 2 0 1 0 38 401 988 0 0 0 1 0 39 10 21 1 4 0 1 0 39 170 407 1 0 1 1 1 40 94 232 1 1 0 1 0 41 520 1270 0 2 1 1 1 41 63 161 1 1 1 1 1 42 396 976 0 1 0 1 0 43 334 823 0 0 0 1 0 43 349 861 0 0 0 1 0 44 69 176 1 3 0 1 0 44 103 251 1 0 1 1 1 45 152 364 1 0 1 1 1 45 179 428 0 0 0 1 0 45 441 1083 1 5 0 1 0 46 492 1209 1 2 1 1 1 46 122 303 0 6 0 1 0 47 335 826 0 0 0 1 0 47 39 100 1 5 0 1 0 47 102 248 0 3 0 1 0 47 462 1131 0 1 0 1 0 47 95 234 1 1 0 1 0 48 48 124 0 0 0 1 0 49 135 335 0 0 0 1 0 50 493 1210 0 7 1 1 1 50 76 189 0 0 1 1 1 51 158 376 0 1 0 1 0 52 161 384 0 2 0 1 0 53 494 1211 1 0 0 1 0 54 267 657 0 2 0 1 0 55 362 895 1 1 0 1 0 55 466 1140 1 0 0 1 0 55 497 1214 1 0 0 1 0 55 388 958 0 0 0 1 0 55 131 326 0 0 0 1 0 55 250 622 1 0 1 1 1 56 424 1040 1 6 1 1 0 57 311 771 1 3 0 1 0 58 150 362 1 3 1 1 1 59 5 11 1 0 1 1 1 60 34 89 1 8 0 1 0 60 511 1248 1 1 0 1 0 61 412 1011 1 7 1 1 1 61 405 996 0 end label values outcome eurod label def eurod 0 "Not depressed", modify
Comment