Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • Margins not estimated in a survey design

    Dear Statalists,

    I am working with survey database. I have run the next logit regression for a subsample of my data, where the dependent variable (fin11) is a binary one. Furthermore, i am including fixed effects at industry level (i.isic).

    Code:
    svyset, clear
    svyset idstd [pweight=wt], strata(strata) singleunit(scaled)
    svy, subpop(if k8==100 & loan_duration<=3): logit fin11 i.n_outcome lcar1 lnemployees i.ownership i.k9 k7 k21 k2c k3a i.isic
    This is the ouput of the regression:

    Code:
    . svy, subpop(if k8==100 & loan_duration<=3): logit fin11 i.n_outcome lcar1 lnemployees i.ownership i.k9 k7 k21 k2c k3a i
    > .isic  /*Only micro variables*/
    (running logit on estimation sample)
    
    note: 11b.isic != 0 predicts success perfectly
          11b.isic dropped and 1 obs not used
    note: 12.isic != 0 predicts failure perfectly
          12.isic dropped and 1 obs not used
    note: 65.isic != 0 predicts failure perfectly
          65.isic dropped and 2 obs not used
    note: 71.isic != 0 predicts success perfectly
          71.isic dropped and 1 obs not used
    note: 74.isic != 0 predicts failure perfectly
          74.isic dropped and 1 obs not used
    note: 93.isic != 0 predicts success perfectly
          93.isic dropped and 1 obs not used
    note: 72.isic omitted because of collinearity
    
    Survey: Logistic regression
    
    Number of strata   =     1,023                  Number of obs     =    122,435
    Number of PSUs     =   122,435                  Population size   =  8,053,231
                                                    Subpop. no. obs   =     25,571
                                                    Subpop. size      =  1,365,637
                                                    Design df         =    121,412
                                                    F(  46, 121367)   =       2.93
                                                    Prob > F          =     0.0000
    
    ---------------------------------------------------------------------------------------------------------
                                            |             Linearized
                                      fin11 |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
    ----------------------------------------+----------------------------------------------------------------
                                1.n_outcome |  -.5290526   .1453492    -3.64   0.000    -.8139347   -.2441706
                                      lcar1 |   .0856082   .1152074     0.74   0.457    -.1401964    .3114128
                                lnemployees |   .2337162   .0556075     4.20   0.000     .1247263     .342706
                                            |
                                  ownership |
                                   Foreign  |   .3864742   .1959367     1.97   0.049     .0024415    .7705069
                                            |
                                         k9 |
    State-owned banks or government agency  |   .5365416   .1888164     2.84   0.004     .1664645    .9066187
           Non-bank financial institutions  |  -.0156541   .2525021    -0.06   0.951     -.510554    .4792459
                                     Other  |  -.9625027   .4206039    -2.29   0.022    -1.786879   -.1381261
                                            |
                                         k7 |  -.1550218   .1587332    -0.98   0.329    -.4661362    .1560925
                                        k21 |   .2372392   .1157189     2.05   0.040      .010432    .4640463
                                        k2c |   .0396068   .2063014     0.19   0.848    -.3647404    .4439541
                                        k3a |  -.6486476   .1958693    -3.31   0.001    -1.032548    -.264747
                                            |
                                       isic |
                                        11  |          0  (empty)
                                        12  |          0  (empty)
                                        15  |   .4093842   .4702355     0.87   0.384    -.5122697    1.331038
                                        16  |   .5014592   .6681139     0.75   0.453    -.8080331    1.810951
                                        17  |   .1552368   .5141449     0.30   0.763    -.8524787    1.162952
                                        18  |   .0936465   .5096458     0.18   0.854    -.9052509    1.092544
                                        19  |   .8201754   .6731193     1.22   0.223    -.4991274    2.139478
                                        20  |   .2221122   .6308589     0.35   0.725    -1.014361    1.458585
                                        21  |  -.7575825   .6488916    -1.17   0.243    -2.029399    .5142343
                                        22  |  -.2264747   .6188005    -0.37   0.714    -1.439314     .986364
                                        23  |   .5691912   .9113761     0.62   0.532    -1.217091    2.355473
                                        24  |   .2438126   .5182789     0.47   0.638    -.7720056    1.259631
                                        25  |   .7963638   .5543106     1.44   0.151    -.2900758    1.882803
                                        26  |   .8156183     .54468     1.50   0.134    -.2519456    1.883182
                                        27  |  -.0681296   .5860489    -0.12   0.907    -1.216776    1.080517
                                        28  |   .4656937   .4812548     0.97   0.333    -.4775578    1.408945
                                        29  |   .0404533   .5759919     0.07   0.944    -1.088481    1.169388
                                        30  |   .1739123   1.200853     0.14   0.885    -2.179741    2.527565
                                        31  |   .2288474   .6038738     0.38   0.705    -.9547352     1.41243
                                        32  |   1.099094    .841879     1.31   0.192    -.5509745    2.749163
                                        33  |   .1711341   .7744631     0.22   0.825    -1.346801    1.689069
                                        34  |   .2133599     .59799     0.36   0.721    -.9586907     1.38541
                                        35  |   .3154521   .6239074     0.51   0.613    -.9073962      1.5383
                                        36  |   .5405704   .6106504     0.89   0.376    -.6562944    1.737435
                                        37  |   4.389489   .9015118     4.87   0.000      2.62254    6.156437
                                        40  |  -.4289746   1.273609    -0.34   0.736    -2.925227    2.067278
                                        45  |   .1355272   .5410039     0.25   0.802    -.9248315    1.195886
                                        50  |   .3037491   .5686715     0.53   0.593    -.8108377    1.418336
                                        51  |   .3227871   .4895057     0.66   0.510    -.6366359     1.28221
                                        52  |   .3529228   .5059105     0.70   0.485    -.6386535    1.344499
                                        55  |   .2119145   .5971252     0.35   0.723     -.958441     1.38227
                                        60  |   .6793623   .6200976     1.10   0.273    -.5360188    1.894743
                                        61  |   1.197038   .8424316     1.42   0.155    -.4541141     2.84819
                                        62  |   .9338751   .9477057     0.99   0.324    -.9236125    2.791363
                                        63  |    .228811   .5288919     0.43   0.665    -.8078084     1.26543
                                        64  |   .0321283   .7168183     0.04   0.964    -1.372824     1.43708
                                        65  |          0  (empty)
                                        70  |   1.431296    1.14142     1.25   0.210    -.8058695    3.668461
                                        71  |          0  (empty)
                                        72  |          0  (omitted)
                                        74  |          0  (empty)
                                        93  |          0  (empty)
                                            |
                                      _cons |  -.1895044   .5747165    -0.33   0.742    -1.315939    .9369305
    ---------------------------------------------------------------------------------------------------------
    Note: 221 strata omitted because they contain no subpopulation members.
    Note: Variance scaled to handle strata with a single sampling unit.
    It can be see that some of the levels of the industry fixed effects are not estimated, might be because I have a dummy variable that only takes the same value in a single industry.
    I am interested on obtaining average marginal effects of all covariates, so I run the next code:

    Code:
    margins, dydx(*)
    And this is the output:

    Code:
    Average marginal effects                        Number of obs     =     33,364
    Model VCE    : Linearized
    
    Expression   : Pr(fin11), predict()
    dy/dx w.r.t. : 1.n_outcome lcar1 lnemployees 1.ownership 2.k9 3.k9 4.k9 k7 k21 k2c k3a 12.isic 15.isic 16.isic 17.isic
                   18.isic 19.isic 20.isic 21.isic 22.isic 23.isic 24.isic 25.isic 26.isic 27.isic 28.isic 29.isic 30.isic
                   31.isic 32.isic 33.isic 34.isic 35.isic 36.isic 37.isic 40.isic 45.isic 50.isic 51.isic 52.isic 55.isic
                   60.isic 61.isic 62.isic 63.isic 64.isic 65.isic 70.isic 71.isic 72.isic 74.isic 93.isic
    
    ---------------------------------------------------------------------------------------------------------
                                            |            Delta-method
                                            |      dy/dx   Std. Err.      t    P>|t|     [95% Conf. Interval]
    ----------------------------------------+----------------------------------------------------------------
                                1.n_outcome |  -.1141856   .0323293    -3.53   0.000    -.1775505   -.0508207
                                      lcar1 |   .0180814   .0243065     0.74   0.457    -.0295589    .0657216
                                lnemployees |   .0493633   .0116403     4.24   0.000     .0265486    .0721781
                                            |
                                  ownership |
                                   Foreign  |   .0782693   .0377003     2.08   0.038     .0043773    .1521613
                                            |
                                         k9 |
    State-owned banks or government agency  |   .1118159   .0379885     2.94   0.003      .037359    .1862728
           Non-bank financial institutions  |  -.0034603   .0558708    -0.06   0.951    -.1129661    .1060455
                                     Other  |  -.2151779   .0895576    -2.40   0.016    -.3907094   -.0396464
                                            |
                                         k7 |  -.0327422   .0335125    -0.98   0.329    -.0984261    .0329416
                                        k21 |   .0501074     .02441     2.05   0.040     .0022643    .0979506
                                        k2c |   .0083654   .0435627     0.19   0.848    -.0770167    .0937475
                                        k3a |  -.1370013       .041    -3.34   0.001    -.2173606   -.0566419
                                            |
                                       isic |
                                        11  |          0  (empty)
                                        12  |          .  (not estimable)
                                        15  |          .  (not estimable)
                                        16  |          .  (not estimable)
                                        17  |          .  (not estimable)
                                        18  |          .  (not estimable)
                                        19  |          .  (not estimable)
                                        20  |          .  (not estimable)
                                        21  |          .  (not estimable)
                                        22  |          .  (not estimable)
                                        23  |          .  (not estimable)
                                        24  |          .  (not estimable)
                                        25  |          .  (not estimable)
                                        26  |          .  (not estimable)
                                        27  |          .  (not estimable)
                                        28  |          .  (not estimable)
                                        29  |          .  (not estimable)
                                        30  |          .  (not estimable)
                                        31  |          .  (not estimable)
                                        32  |          .  (not estimable)
                                        33  |          .  (not estimable)
                                        34  |          .  (not estimable)
                                        35  |          .  (not estimable)
                                        36  |          .  (not estimable)
                                        37  |          .  (not estimable)
                                        40  |          .  (not estimable)
                                        45  |          .  (not estimable)
                                        50  |          .  (not estimable)
                                        51  |          .  (not estimable)
                                        52  |          .  (not estimable)
                                        55  |          .  (not estimable)
                                        60  |          .  (not estimable)
                                        61  |          .  (not estimable)
                                        62  |          .  (not estimable)
                                        63  |          .  (not estimable)
                                        64  |          .  (not estimable)
                                        65  |          .  (not estimable)
                                        70  |          .  (not estimable)
                                        71  |          .  (not estimable)
                                        72  |          .  (not estimable)
                                        74  |          .  (not estimable)
                                        93  |          .  (not estimable)
    ---------------------------------------------------------------------------------------------------------
    Note: dy/dx for factor levels is the discrete change from the base level.
    It can be seen that I do not get the margins of the industry fixed effects, but I got it for the covariates. Is this issue a major problem? I mean, what could be causing this "problem"?
    Finally, I have a doubt regarding subpop command. The number of observations in th elogit regression is 122,435, meanwhile in the margins estimation 33,364, why such a big difference?

    Thank you,
    Ibai

Working...
X