Dear Statalists,
I am working with survey database. I have run the next logit regression for a subsample of my data, where the dependent variable (fin11) is a binary one. Furthermore, i am including fixed effects at industry level (i.isic).
This is the ouput of the regression:
It can be see that some of the levels of the industry fixed effects are not estimated, might be because I have a dummy variable that only takes the same value in a single industry.
I am interested on obtaining average marginal effects of all covariates, so I run the next code:
And this is the output:
It can be seen that I do not get the margins of the industry fixed effects, but I got it for the covariates. Is this issue a major problem? I mean, what could be causing this "problem"?
Finally, I have a doubt regarding subpop command. The number of observations in th elogit regression is 122,435, meanwhile in the margins estimation 33,364, why such a big difference?
Thank you,
Ibai
I am working with survey database. I have run the next logit regression for a subsample of my data, where the dependent variable (fin11) is a binary one. Furthermore, i am including fixed effects at industry level (i.isic).
Code:
svyset, clear svyset idstd [pweight=wt], strata(strata) singleunit(scaled) svy, subpop(if k8==100 & loan_duration<=3): logit fin11 i.n_outcome lcar1 lnemployees i.ownership i.k9 k7 k21 k2c k3a i.isic
Code:
. svy, subpop(if k8==100 & loan_duration<=3): logit fin11 i.n_outcome lcar1 lnemployees i.ownership i.k9 k7 k21 k2c k3a i > .isic /*Only micro variables*/ (running logit on estimation sample) note: 11b.isic != 0 predicts success perfectly 11b.isic dropped and 1 obs not used note: 12.isic != 0 predicts failure perfectly 12.isic dropped and 1 obs not used note: 65.isic != 0 predicts failure perfectly 65.isic dropped and 2 obs not used note: 71.isic != 0 predicts success perfectly 71.isic dropped and 1 obs not used note: 74.isic != 0 predicts failure perfectly 74.isic dropped and 1 obs not used note: 93.isic != 0 predicts success perfectly 93.isic dropped and 1 obs not used note: 72.isic omitted because of collinearity Survey: Logistic regression Number of strata = 1,023 Number of obs = 122,435 Number of PSUs = 122,435 Population size = 8,053,231 Subpop. no. obs = 25,571 Subpop. size = 1,365,637 Design df = 121,412 F( 46, 121367) = 2.93 Prob > F = 0.0000 --------------------------------------------------------------------------------------------------------- | Linearized fin11 | Coef. Std. Err. t P>|t| [95% Conf. Interval] ----------------------------------------+---------------------------------------------------------------- 1.n_outcome | -.5290526 .1453492 -3.64 0.000 -.8139347 -.2441706 lcar1 | .0856082 .1152074 0.74 0.457 -.1401964 .3114128 lnemployees | .2337162 .0556075 4.20 0.000 .1247263 .342706 | ownership | Foreign | .3864742 .1959367 1.97 0.049 .0024415 .7705069 | k9 | State-owned banks or government agency | .5365416 .1888164 2.84 0.004 .1664645 .9066187 Non-bank financial institutions | -.0156541 .2525021 -0.06 0.951 -.510554 .4792459 Other | -.9625027 .4206039 -2.29 0.022 -1.786879 -.1381261 | k7 | -.1550218 .1587332 -0.98 0.329 -.4661362 .1560925 k21 | .2372392 .1157189 2.05 0.040 .010432 .4640463 k2c | .0396068 .2063014 0.19 0.848 -.3647404 .4439541 k3a | -.6486476 .1958693 -3.31 0.001 -1.032548 -.264747 | isic | 11 | 0 (empty) 12 | 0 (empty) 15 | .4093842 .4702355 0.87 0.384 -.5122697 1.331038 16 | .5014592 .6681139 0.75 0.453 -.8080331 1.810951 17 | .1552368 .5141449 0.30 0.763 -.8524787 1.162952 18 | .0936465 .5096458 0.18 0.854 -.9052509 1.092544 19 | .8201754 .6731193 1.22 0.223 -.4991274 2.139478 20 | .2221122 .6308589 0.35 0.725 -1.014361 1.458585 21 | -.7575825 .6488916 -1.17 0.243 -2.029399 .5142343 22 | -.2264747 .6188005 -0.37 0.714 -1.439314 .986364 23 | .5691912 .9113761 0.62 0.532 -1.217091 2.355473 24 | .2438126 .5182789 0.47 0.638 -.7720056 1.259631 25 | .7963638 .5543106 1.44 0.151 -.2900758 1.882803 26 | .8156183 .54468 1.50 0.134 -.2519456 1.883182 27 | -.0681296 .5860489 -0.12 0.907 -1.216776 1.080517 28 | .4656937 .4812548 0.97 0.333 -.4775578 1.408945 29 | .0404533 .5759919 0.07 0.944 -1.088481 1.169388 30 | .1739123 1.200853 0.14 0.885 -2.179741 2.527565 31 | .2288474 .6038738 0.38 0.705 -.9547352 1.41243 32 | 1.099094 .841879 1.31 0.192 -.5509745 2.749163 33 | .1711341 .7744631 0.22 0.825 -1.346801 1.689069 34 | .2133599 .59799 0.36 0.721 -.9586907 1.38541 35 | .3154521 .6239074 0.51 0.613 -.9073962 1.5383 36 | .5405704 .6106504 0.89 0.376 -.6562944 1.737435 37 | 4.389489 .9015118 4.87 0.000 2.62254 6.156437 40 | -.4289746 1.273609 -0.34 0.736 -2.925227 2.067278 45 | .1355272 .5410039 0.25 0.802 -.9248315 1.195886 50 | .3037491 .5686715 0.53 0.593 -.8108377 1.418336 51 | .3227871 .4895057 0.66 0.510 -.6366359 1.28221 52 | .3529228 .5059105 0.70 0.485 -.6386535 1.344499 55 | .2119145 .5971252 0.35 0.723 -.958441 1.38227 60 | .6793623 .6200976 1.10 0.273 -.5360188 1.894743 61 | 1.197038 .8424316 1.42 0.155 -.4541141 2.84819 62 | .9338751 .9477057 0.99 0.324 -.9236125 2.791363 63 | .228811 .5288919 0.43 0.665 -.8078084 1.26543 64 | .0321283 .7168183 0.04 0.964 -1.372824 1.43708 65 | 0 (empty) 70 | 1.431296 1.14142 1.25 0.210 -.8058695 3.668461 71 | 0 (empty) 72 | 0 (omitted) 74 | 0 (empty) 93 | 0 (empty) | _cons | -.1895044 .5747165 -0.33 0.742 -1.315939 .9369305 --------------------------------------------------------------------------------------------------------- Note: 221 strata omitted because they contain no subpopulation members. Note: Variance scaled to handle strata with a single sampling unit.
I am interested on obtaining average marginal effects of all covariates, so I run the next code:
Code:
margins, dydx(*)
Code:
Average marginal effects Number of obs = 33,364 Model VCE : Linearized Expression : Pr(fin11), predict() dy/dx w.r.t. : 1.n_outcome lcar1 lnemployees 1.ownership 2.k9 3.k9 4.k9 k7 k21 k2c k3a 12.isic 15.isic 16.isic 17.isic 18.isic 19.isic 20.isic 21.isic 22.isic 23.isic 24.isic 25.isic 26.isic 27.isic 28.isic 29.isic 30.isic 31.isic 32.isic 33.isic 34.isic 35.isic 36.isic 37.isic 40.isic 45.isic 50.isic 51.isic 52.isic 55.isic 60.isic 61.isic 62.isic 63.isic 64.isic 65.isic 70.isic 71.isic 72.isic 74.isic 93.isic --------------------------------------------------------------------------------------------------------- | Delta-method | dy/dx Std. Err. t P>|t| [95% Conf. Interval] ----------------------------------------+---------------------------------------------------------------- 1.n_outcome | -.1141856 .0323293 -3.53 0.000 -.1775505 -.0508207 lcar1 | .0180814 .0243065 0.74 0.457 -.0295589 .0657216 lnemployees | .0493633 .0116403 4.24 0.000 .0265486 .0721781 | ownership | Foreign | .0782693 .0377003 2.08 0.038 .0043773 .1521613 | k9 | State-owned banks or government agency | .1118159 .0379885 2.94 0.003 .037359 .1862728 Non-bank financial institutions | -.0034603 .0558708 -0.06 0.951 -.1129661 .1060455 Other | -.2151779 .0895576 -2.40 0.016 -.3907094 -.0396464 | k7 | -.0327422 .0335125 -0.98 0.329 -.0984261 .0329416 k21 | .0501074 .02441 2.05 0.040 .0022643 .0979506 k2c | .0083654 .0435627 0.19 0.848 -.0770167 .0937475 k3a | -.1370013 .041 -3.34 0.001 -.2173606 -.0566419 | isic | 11 | 0 (empty) 12 | . (not estimable) 15 | . (not estimable) 16 | . (not estimable) 17 | . (not estimable) 18 | . (not estimable) 19 | . (not estimable) 20 | . (not estimable) 21 | . (not estimable) 22 | . (not estimable) 23 | . (not estimable) 24 | . (not estimable) 25 | . (not estimable) 26 | . (not estimable) 27 | . (not estimable) 28 | . (not estimable) 29 | . (not estimable) 30 | . (not estimable) 31 | . (not estimable) 32 | . (not estimable) 33 | . (not estimable) 34 | . (not estimable) 35 | . (not estimable) 36 | . (not estimable) 37 | . (not estimable) 40 | . (not estimable) 45 | . (not estimable) 50 | . (not estimable) 51 | . (not estimable) 52 | . (not estimable) 55 | . (not estimable) 60 | . (not estimable) 61 | . (not estimable) 62 | . (not estimable) 63 | . (not estimable) 64 | . (not estimable) 65 | . (not estimable) 70 | . (not estimable) 71 | . (not estimable) 72 | . (not estimable) 74 | . (not estimable) 93 | . (not estimable) --------------------------------------------------------------------------------------------------------- Note: dy/dx for factor levels is the discrete change from the base level.
Finally, I have a doubt regarding subpop command. The number of observations in th elogit regression is 122,435, meanwhile in the margins estimation 33,364, why such a big difference?
Thank you,
Ibai