Dear all,
I have a problem with a dataset.
I have 8 rats with a continuous outcome measurement (variable "v").
- There are two baseline values (variables "baseline" and "baseline2")
- There are 10 time points (variable "time": 30, 60, 90, 120, 150, 180, 210, 240, 270, 300).
- All of this is for 4 different dosages (variable "dose").
I want to account for the correlation of time points within each rat.
I want to test multiple variance-covariance structures and then compare the models using the Akaike criterion.
If I use a model with an independent matrix, such as:
mixed v i.dose##i.time || rat: time, cov(un) residuals(independent, by(time))
I have no issues.
However, if I try to assume that the correlation within each rat is time-dependent (e.g., autoregressive, first order), I get the error message: "repeated time values within lowest-level panels."
I have checked and I don't see any repeated combinations of variables.
Where am I going wrong?
Best regards.
Gianfrnaco
Code:
* Example generated by -dataex-. For more info, type help dataex clear input byte rat float(v baseline baseline2) int time byte dose 1 98.1 90.1 101.2 30 1 2 112.2 101.3 120 30 1 3 114.4 114 107.2 30 1 4 99.6 104.9 109.4 30 1 5 87.3 101.7 117 30 1 6 99.6 110.1 122.3 30 1 7 104.8 105.7 100.9 30 1 8 96.3 107.4 109.7 30 1 1 103.4 90.1 101.2 60 1 2 106 101.3 120 60 1 3 116.1 114 107.2 60 1 4 102.7 104.9 109.4 60 1 5 116.1 101.7 117 60 1 6 106.5 110.1 122.3 60 1 7 105.7 105.7 100.9 60 1 8 104.3 107.4 109.7 60 1 1 112 90.1 101.2 90 1 2 122 101.3 120 90 1 3 108 114 107.2 90 1 4 103 104.9 109.4 90 1 5 116 101.7 117 90 1 6 114 110.1 122.3 90 1 7 98 105.7 100.9 90 1 8 101 107.4 109.7 90 1 1 119 90.1 101.2 120 1 2 120 101.3 120 120 1 3 107 114 107.2 120 1 4 116 104.9 109.4 120 1 5 103 101.7 117 120 1 6 97 110.1 122.3 120 1 7 106 105.7 100.9 120 1 8 109 107.4 109.7 120 1 1 101.8 90.1 101.2 150 1 2 119 101.3 120 150 1 3 88 114 107.2 150 1 4 102 104.9 109.4 150 1 5 106 101.7 117 150 1 6 109 110.1 122.3 150 1 7 103.4 105.7 100.9 150 1 8 115.9 107.4 109.7 150 1 1 114 90.1 101.2 180 1 2 111 101.3 120 180 1 3 97 114 107.2 180 1 4 105 104.9 109.4 180 1 5 111 101.7 117 180 1 6 109 110.1 122.3 180 1 7 105 105.7 100.9 180 1 8 112 107.4 109.7 180 1 1 105 90.1 101.2 210 1 2 106 101.3 120 210 1 3 105 114 107.2 210 1 4 125.3 104.9 109.4 210 1 5 107 101.7 117 210 1 6 106 110.1 122.3 210 1 7 101 105.7 100.9 210 1 8 88.5 107.4 109.7 210 1 1 110 90.1 101.2 240 1 2 97 101.3 120 240 1 3 81 114 107.2 240 1 4 106 104.9 109.4 240 1 5 92 101.7 117 240 1 6 109 110.1 122.3 240 1 7 91 105.7 100.9 240 1 8 110 107.4 109.7 240 1 1 101 90.1 101.2 270 1 2 97.3 101.3 120 270 1 3 91 114 107.2 270 1 4 136 104.9 109.4 270 1 5 103.1 101.7 117 270 1 6 108 110.1 122.3 270 1 7 110 105.7 100.9 270 1 8 107 107.4 109.7 270 1 1 111 90.1 101.2 300 1 2 97 101.3 120 300 1 3 111 114 107.2 300 1 4 112 104.9 109.4 300 1 5 113 101.7 117 300 1 6 103 110.1 122.3 300 1 7 122 105.7 100.9 300 1 8 117 107.4 109.7 300 1 1 110 111 107.2 30 2 2 112.6 97 110.1 30 2 3 109.2 111 104 30 2 4 122.3 112 109 30 2 5 105.2 113 100.2 30 2 6 121.2 103 99.5 30 2 7 106 122 116.4 30 2 8 100.2 117 114 30 2 1 82.2 111 107.2 60 2 2 80.7 97 110.1 60 2 3 84.3 111 104 60 2 4 81.15 112 109 60 2 5 85.8 113 100.2 60 2 6 88 103 99.5 60 2 7 90.3 122 116.4 60 2 8 103.4 117 114 60 2 1 55 111 107.2 90 2 2 63.1 97 110.1 90 2 3 51.2 111 104 90 2 4 59.8 112 109 90 2 end
Comment