Dear all,
I am new to the statalist forum and would like to ask one question about one specific use of the margins command. Please feel free to tell me if my post does not meet the community standards so that I can improve next time.
I am running a regression with interaction terms between two factor variables (year and group) and one continuous variable (house), and interested in the marginal effects of house in different years for different groups.
Below is a sample of my dataset.
What I hope to do is to estimate marginal effects for different groups in different years at different values of the house variable. For example, hypothetically I may have a regression like below:
The I wish to generate estimates of the marginal effects. Say, I would like to do:
I tried the following code:
But it estimates the marginal effects when house is equal to the mean in different groups in different years. In each year, the estimation is drawn at house equal to the group mean for each group. This does not satisfy my need, because I am trying to estimate the marginal effects when house is equal to the mean of one specific group. In other words, the value taken by the variable house should be different for different years, but the same for both groups. For instance, I may want house = (7900) for both groups in the year of 1990, and house = (9675) for both groups in the year of 2015, etc.
Do you know how I may achieve this goal? Thank you in advance for your help!
Best,
Yangfan
I am new to the statalist forum and would like to ask one question about one specific use of the margins command. Please feel free to tell me if my post does not meet the community standards so that I can improve next time.
I am running a regression with interaction terms between two factor variables (year and group) and one continuous variable (house), and interested in the marginal effects of house in different years for different groups.
Below is a sample of my dataset.
Code:
* Example generated by -dataex-. For more info, type help dataex clear input float(nw_pov_no_vehi house bnd goest ffabus ffaequ liqcer year HH_type_elderdom) 0 1595358.6 0 2823785 10635724 0 1196519 2016 2 0 957215.2 0 0 0 148900.14 69132.21 2016 2 1 0 0 0 0 0 1223.1083 2016 1 1 0 0 0 0 0 3509.789 2016 1 1 0 0 0 0 0 3084.36 2016 1 0 340343.2 0 0 0 67005.06 214841.63 2016 1 0 150000 0 0 0 0 37000 2019 2 1 0 0 0 0 0 3100 2019 1 1 0 0 0 0 0 481 2019 1 0 1000000 25000 0 0 0 448000 2019 2 1 0 0 0 0 0 0 1949 1 0 176034.6 0 0 0 0 29.3391 1950 1 1 0 0 0 0 0 977.97 1950 1 1 0 997.5294 0 0 0 2933.91 1950 1 0 76973.28 0 0 0 0 2535.5906 1951 1 0 0 3758.1074 0 0 68184.13 18111.361 1951 1 0 48363.34 2251.0938 0 0 0 1758.667 1953 2 1 0 0 0 0 0 2638.0005 1953 1 0 65950.01 747.4335 15089.362 0 0 7175.361 1953 2 0 175866.7 747.4335 79140.02 87260.57 55574.51 5276.001 1953 1 0 0 0 123106.69 0 0 3209.5674 1953 1 1 0 0 0 0 0 0 1953 1 1 0 0 0 0 0 0 1954 1 0 126958.48 0 33271.88 8395.871 0 3502.303 1954 1 0 35135.645 2512.199 0 0 0 878.3911 1955 1 1 0 0 0 0 0 0 1955 1 0 45676.34 0 0 0 0 3952.76 1955 1 0 0 3478.429 0 0 0 29645.7 1955 1 0 129810.83 0 0 0 50134.63 0 1956 2 0 100411.45 0 0 17675.734 0 2091.9053 1957 1 0 267763.88 223248.14 0 0 0 627.5716 1957 2 0 102629 0 0 0 0 610.887 1958 1 0 0 0 0 0 9591.3125 1018.1449 1958 2 1 0 0 0 0 0 5649.209 1959 1 0 121054.48 0 0 0 0 40.35149 1959 1 0 129124.78 0 0 0 0 0 1959 1 0 143104.61 22658.23 100113.65 0 0 32039.53 1960 1 0 198756.4 0 0 0 0 1383.3445 1960 1 0 0 381.6123 0 0 0 12378.55 1960 1 0 155577.34 0 0 0 0 13224.074 1962 1 0 67156.05 0 0 0 178141.1 2238.535 1965 2 0 59694.27 0 0 0 0 910.3375 1965 1 0 52232.48 0 0 0 0 134.31209 1965 1 0 0 0 6764.124 0 0 0 1965 1 1 0 0 0 0 0 0 1967 2 0 67641.24 5580.402 0 0 0 67641.24 1968 1 0 51333.45 0 64166.82 30492.057 0 1283.3363 1969 1 0 363567.5 0 0 11876.108 0 12240.105 1970 1 0 130772.22 0 0 0 0 11.624197 1971 1 0 61027.04 0 0 0 0 0 1971 2 0 0 0 0 0 26010.72 5812.099 1971 2 0 107523.83 0 458095.1 129449.59 0 581.20984 1971 1 0 174362.95 0 0 0 130053.62 30222.914 1971 1 0 97052.84 0 23292.68 0 0 14245.033 1977 1 1 0 1198.4889 0 0 0 1925.0045 1977 1 0 182459.34 0 0 0 0 3029.729 1977 1 1 0 0 0 0 0 0 1983 1 0 110159.3 151.77504 0 36516.582 0 5904.538 1983 1 0 227662.55 0 0 14687.906 0 489.5969 1983 1 0 99447.66 0 0 59668.59 0 238.6744 1989 1 0 1988953 501216.2 2227627.5 49723.83 1292819.6 895028.9 1989 2 1 0 596.686 0 0 0 198.89532 1989 1 0 129281.95 0 0 0 0 1193.372 1989 1 0 119337.19 0 0 0 0 75978.01 1989 2 0 141891.83 3338.631 0 0 0 3505.563 1995 1 0 534181 38279580 103497.57 31303008 29213024 25086994 1995 2 0 200317.88 0 0 0 500.7947 3004.768 1995 1 0 584260.5 0 12519.867 0 0 2170.1104 1995 1 0 143561.14 0 0 0 0 834.6578 1995 1 0 597662.25 0 174580.3 0 0 19125.191 1998 1 0 471838.6 157.27954 0 0 10223.17 58193.43 1998 1 0 0 0 0 0 235919.3 62911.81 1998 2 1 0 0 0 0 0 4718.386 1998 1 0 324952.25 0 0 0 0 26357.24 2001 1 0 722116.1 0 0 0 12998.09 18052.902 2001 2 0 7221161 18601712 2166348.3 0 17330786 11594296 2001 1 0 252740.64 0 0 0 0 48815.05 2001 2 0 31773.11 0 0 0 0 2253.0024 2001 1 0 61005.74 203.35246 0 0 0 27.11366 2004 1 1 66428.47 0 0 0 0 271.1366 2004 1 1 0 0 0 0 0 2033.5244 2004 2 0 94897.81 94.89781 0 0 0 677.8415 2004 1 0 246882.14 0 0 0 0 0 2007 1 0 617205.4 0 1919508.6 100115648 0 247869.67 2007 2 1 12344.107 0 0 0 0 12.344107 2007 1 0 308602.7 0 0 0 0 0 2007 1 1 0 0 0 0 0 6172.054 2007 1 0 2098498.3 0 3394629.5 0 0 248486.88 2007 1 0 1178248.6 0 0 0 1178248.6 5419.944 2010 1 0 176737.3 0 0 34758.336 0 2827.797 2010 1 0 242719.23 0 0 0 0 17496.992 2010 1 1 212084.77 0 0 0 0 1413.8984 2010 1 0 235649.73 11782.486 1537614.5 0 0 174380.8 2010 2 0 131780.42 219.63403 0 1098.1702 0 1877.871 2013 1 0 378868.7 0 0 0 0 3305.4924 2013 2 0 274542.56 0 0 0 52712.17 85657.27 2013 2 0 422795.5 0 0 5710.485 0 48319.49 2013 1 0 384359.6 0 0 0 0 878536.1 2013 2 0 82362.77 0 0 0 0 58203.02 2013 1 0 1186023.9 12310488 8236277 42542016 37337788 2766291 2013 2 end label values HH_type_elderdom HH_category label def HH_category 1 "children HH", modify label def HH_category 2 "elderly HH", modify
Code:
regress nw_pov_no_vehi goest bnd ffabus house i.year#c.house i.year#i.HH_type_elderdom#c.house
Code:
margins, over(year HH_type_elderdom) at(house = (TBD))
Code:
margins, over(year HH_type_elderdom) at( (mean) house )
Do you know how I may achieve this goal? Thank you in advance for your help!
Best,
Yangfan
Comment