Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • Event study - Testing significance of CAAR (cumulative average abnormal return)

    Hi Guys,
    I am currently working on my thesis and i have sucsessfully calculated the abnormal returns and the CAAR (cumulative average abnormal return) for all companies in an event-study setup.
    Now i want to test if these results are statisticly significant.

    I have read that it is possible to test the significance by regressing the CAR's on a constant term with robust standard errors using the following command in STATA:
    reg CAR if dif==0
    The resulting p-Value of the constant than can be used to determine the significance of the CAAR.

    Do you have some usefull Literature that explains, how the test-statistic behind this command is constructed and how this test excactly works?
    I would be very gratefull if someone could help me out.

    Best Regards,
    Raphael
    Last edited by Raphael Bluff; 03 Jun 2023, 08:30. Reason: event study

  • #2
    Raphael:
    welcome to this forum.
    Provided that I'm not familiar with the literature of your research field, set aside the robust standard error for a while, is basically a mean calculation:
    Code:
    . sysuse auto
    (1978 automobile data)
    
    . reg price if foreign==0
    
          Source |       SS           df       MS      Number of obs   =        52
    -------------+----------------------------------   F(0, 51)        =      0.00
           Model |           0         0           .   Prob > F        =         .
        Residual |   489194801        51  9592054.92   R-squared       =    0.0000
    -------------+----------------------------------   Adj R-squared   =    0.0000
           Total |   489194801        51  9592054.92   Root MSE        =    3097.1
    
    ------------------------------------------------------------------------------
           price | Coefficient  Std. err.      t    P>|t|     [95% conf. interval]
    -------------+----------------------------------------------------------------
           _cons |   6072.423   429.4911    14.14   0.000     5210.184    6934.662
    ------------------------------------------------------------------------------
    
    . reg price if foreign==0, robust
    
    Linear regression                               Number of obs     =         52
                                                    F(0, 51)          =       0.00
                                                    Prob > F          =          .
                                                    R-squared         =     0.0000
                                                    Root MSE          =     3097.1
    
    ------------------------------------------------------------------------------
                 |               Robust
           price | Coefficient  std. err.      t    P>|t|     [95% conf. interval]
    -------------+----------------------------------------------------------------
           _cons |   6072.423   429.4911    14.14   0.000     5210.184    6934.662
    ------------------------------------------------------------------------------
    
    . mean price if foreign==0
    
    Mean estimation                             Number of obs = 52
    
    --------------------------------------------------------------
                 |       Mean   Std. err.     [95% conf. interval]
    -------------+------------------------------------------------
           price |   6072.423   429.4911      5210.184    6934.662
    --------------------------------------------------------------
    
    .
    Kind regards,
    Carlo
    (Stata 19.0)

    Comment

    Working...
    X