Hi,
I would like to run two equivalent commands using ivprobit and gsem, but I am failing to obtaining the same results.
Here is my attempt:
These are the results:
Can anybody help with this?
I would like to run two equivalent commands using ivprobit and gsem, but I am failing to obtaining the same results.
Here is my attempt:
Code:
clear all webuse laborsup ivprobit fem_work (other_inc = male_educ) fem_educ kids, first gsem (fem_work <- other_inc fem_educ kids L@1, probit) /// (other_inc <- fem_educ kids male_educ), /// var(L@1)
Code:
. clear all . webuse laborsup . ivprobit fem_work (other_inc = male_educ) fem_educ kids, first Fitting exogenous probit model Iteration 0: log likelihood = -344.63508 Iteration 1: log likelihood = -252.10819 Iteration 2: log likelihood = -252.04529 Iteration 3: log likelihood = -252.04529 Fitting full model Iteration 0: log likelihood = -2368.2142 Iteration 1: log likelihood = -2368.2062 Iteration 2: log likelihood = -2368.2062 Probit model with endogenous regressors Number of obs = 500 Wald chi2(3) = 163.88 Log likelihood = -2368.2062 Prob > chi2 = 0.0000 ---------------------------------------------------------------------------------------------- | Coefficient Std. err. z P>|z| [95% conf. interval] -----------------------------+---------------------------------------------------------------- fem_work | other_inc | -.0542756 .0060854 -8.92 0.000 -.0662028 -.0423485 fem_educ | .211111 .0268648 7.86 0.000 .1584569 .2637651 kids | -.1820929 .0478267 -3.81 0.000 -.2758315 -.0883542 _cons | .3672086 .4480724 0.82 0.412 -.5109971 1.245414 -----------------------------+---------------------------------------------------------------- other_inc | fem_educ | .3351866 .2825972 1.19 0.236 -.2186937 .889067 kids | .8329056 .5475666 1.52 0.128 -.2403052 1.906116 male_educ | 2.845253 .282746 10.06 0.000 2.291081 3.399425 _cons | 9.872562 5.029193 1.96 0.050 .0155242 19.7296 -----------------------------+---------------------------------------------------------------- /athrho2_1 | .3907859 .1509443 2.59 0.010 .0949404 .6866313 /lnsigma2 | 2.813383 .0316228 88.97 0.000 2.751404 2.875363 -----------------------------+---------------------------------------------------------------- corr(e.other_inc,e.fem_work)| .3720375 .1300518 .0946562 .5958136 sd(e.other_inc)| 16.66621 .5270318 15.66461 17.73186 ---------------------------------------------------------------------------------------------- Wald test of exogeneity (corr = 0): chi2(1) = 6.70 Prob > chi2 = 0.0096 Instrumented: other_inc Instruments: fem_educ kids male_educ . gsem (fem_work <- other_inc fem_educ kids L@1, probit) /// > (other_inc <- fem_educ kids male_educ), /// > var(L@1) Fitting fixed-effects model: Iteration 0: log likelihood = -2373.0212 Iteration 1: log likelihood = -2371.4789 Iteration 2: log likelihood = -2371.4753 Iteration 3: log likelihood = -2371.4753 Refining starting values: Grid node 0: log likelihood = -2377.7146 Fitting full model: Iteration 0: log likelihood = -2377.7146 Iteration 1: log likelihood = -2371.4764 Iteration 2: log likelihood = -2371.4747 Iteration 3: log likelihood = -2371.4747 Generalized structural equation model Number of obs = 500 Response: fem_work Family: Bernoulli Link: Probit Response: other_inc Family: Gaussian Link: Identity Log likelihood = -2371.4747 ( 1) [fem_work]L = 1 ( 2) [/]var(L) = 1 ---------------------------------------------------------------------------------- | Coefficient Std. err. z P>|z| [95% conf. interval] -----------------+---------------------------------------------------------------- fem_work | other_inc | -.0540839 .0057625 -9.39 0.000 -.0653782 -.0427896 fem_educ | .307729 .0376262 8.18 0.000 .2339831 .3814749 kids | -.2908398 .0669661 -4.34 0.000 -.422091 -.1595886 L | 1 (constrained) _cons | -.6589946 .4799027 -1.37 0.170 -1.599587 .2815973 -----------------+---------------------------------------------------------------- other_inc | fem_educ | .3351866 .2825972 1.19 0.236 -.2186937 .889067 kids | .8329056 .5475666 1.52 0.128 -.2403052 1.906116 male_educ | 2.845253 .282746 10.06 0.000 2.291081 3.399425 _cons | 9.872562 5.029193 1.96 0.050 .0155242 19.7296 -----------------+---------------------------------------------------------------- var(L)| 1 (constrained) -----------------+---------------------------------------------------------------- var(e.other_inc)| 277.7625 17.56725 245.3799 314.4187 ----------------------------------------------------------------------------------
Can anybody help with this?
Comment