Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • Significant relation in levels but not in differences

    Good morning,

    I am using reghdfe in Stata 16.1 for Windows.

    I have a panel dataset with about 10,000 observations. My dependent variable (IIC_110_hosp_new) and independent variable of interest (iv) are both indicator variables. I find a significant relation in levels but not in differences. I have seen several posts with this same question but no suggestions as to why the relation would not hold in differences as expected.

    Any guidance is much appreciated. Thanks,
    Ginger


    Code:
     reghdfe IIC_110_hosp_new iv lrev cmi growth_bedsize bedsize num acqd age_all_apps age_all_apps2 pct_medicaid pct_medicare county_HHI_all purchasegrou
    > p backfill_academic backfill_profit religious specialty_hosp rural, absorb (cbsa data_year sysid) cluster(sysid)
    (MWFE estimator converged in 56 iterations)
    
    HDFE Linear regression                            Number of obs   =     10,775
    Absorbing 3 HDFE groups                           F(  18,    347) =       7.43
    Statistics robust to heteroskedasticity           Prob > F        =     0.0000
                                                      R-squared       =     0.6484
                                                      Adj R-squared   =     0.6184
                                                      Within R-sq.    =     0.0515
    Number of clusters (sysid)   =        348         Root MSE        =     0.3055
    
                                         (Std. Err. adjusted for 348 clusters in sysid)
    -----------------------------------------------------------------------------------
                      |               Robust
     IIC_110_hosp_new |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
    ------------------+----------------------------------------------------------------
                   iv |   .0909766   .0170995     5.32   0.000     .0573449    .1246082
                 lrev |   .0181682   .0145263     1.25   0.212    -.0104025    .0467389
                  cmi |  -.0213183   .0423344    -0.50   0.615    -.1045827    .0619461
       growth_bedsize |   -.008643   .0234295    -0.37   0.712    -.0547247    .0374386
              bedsize |   .0001105   .0000595     1.86   0.064    -6.55e-06    .0002276
                  num |   .0017873    .001612     1.11   0.268    -.0013832    .0049578
                 acqd |  -.2150124   .0452321    -4.75   0.000     -.303976   -.1260489
         age_all_apps |   .0173815   .0167258     1.04   0.299    -.0155151    .0502782
        age_all_apps2 |  -.0015197   .0009383    -1.62   0.106    -.0033652    .0003257
         pct_medicaid |   .0003359   .0011223     0.30   0.765    -.0018714    .0025433
         pct_medicare |   .0005903   .0008958     0.66   0.510    -.0011715    .0023521
       county_HHI_all |  -5.01e-06   3.99e-06    -1.25   0.211    -.0000129    2.85e-06
        purchasegroup |   .0118717   .0181146     0.66   0.513    -.0237565    .0474999
    backfill_academic |  -.0073197   .0166686    -0.44   0.661    -.0401039    .0254646
      backfill_profit |   .0179319   .0445519     0.40   0.688    -.0696938    .1055576
            religious |   .0331071   .0200178     1.65   0.099    -.0062644    .0724786
       specialty_hosp |  -.0140059   .0606577    -0.23   0.818    -.1333089     .105297
                rural |   .0170688    .034588     0.49   0.622    -.0509598    .0850973
                _cons |   .2103599   .2029035     1.04   0.301    -.1887156    .6094354
    -----------------------------------------------------------------------------------
    
    Absorbed degrees of freedom:
    -----------------------------------------------------+
     Absorbed FE | Categories  - Redundant  = Num. Coefs |
    -------------+---------------------------------------|
            cbsa |       475           0         475     |
       data_year |         9           1           8     |
           sysid |       348         348           0    *|
    -----------------------------------------------------+
    * = FE nested within cluster; treated as redundant for DoF computation
    
    . 
    . reghdfe d.IIC_110_hosp_new d.(iv lrev cmi growth_bedsize bedsize num acqd age_all_apps age_all_apps2 pct_medicaid pct_medicare county_HHI_all purchas
    > egroup backfill_academic backfill_profit religious specialty_hosp rural), absorb (cbsa data_year sysid) cluster(sysid)
    (dropped 39 singleton observations)
    (MWFE estimator converged in 46 iterations)
    note: D.backfill_academic omitted because of collinearity
    note: D.backfill_profit omitted because of collinearity
    note: D.religious omitted because of collinearity
    note: D.specialty_hosp omitted because of collinearity
    note: D.rural omitted because of collinearity
    
    HDFE Linear regression                            Number of obs   =      9,069
    Absorbing 3 HDFE groups                           F(  13,    318) =       1.75
    Statistics robust to heteroskedasticity           Prob > F        =     0.0508
                                                      R-squared       =     0.0990
                                                      Adj R-squared   =     0.0131
                                                      Within R-sq.    =     0.0226
    Number of clusters (sysid)   =        319         Root MSE        =     0.2860
    
                                         (Std. Err. adjusted for 319 clusters in sysid)
    -----------------------------------------------------------------------------------
    D.                |               Robust
     IIC_110_hosp_new |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
    ------------------+----------------------------------------------------------------
                   iv |
                  D1. |  -.0050465   .0112212    -0.45   0.653    -.0271237    .0170307
                      |
                 lrev |
                  D1. |   .0094508   .0119898     0.79   0.431    -.0141384    .0330401
                      |
                  cmi |
                  D1. |   .0615533   .0611378     1.01   0.315    -.0587324     .181839
                      |
       growth_bedsize |
                  D1. |   .0034839   .0137963     0.25   0.801    -.0236598    .0306275
                      |
              bedsize |
                  D1. |   .0000669   .0001486     0.45   0.653    -.0002255    .0003593
                      |
                  num |
                  D1. |  -.0004232   .0007383    -0.57   0.567    -.0018758    .0010294
                      |
                 acqd |
                  D1. |  -.1594614   .0378615    -4.21   0.000     -.233952   -.0849708
                      |
         age_all_apps |
                  D1. |  -.0424908   .0204681    -2.08   0.039    -.0827608   -.0022209
                      |
        age_all_apps2 |
                  D1. |   .0019362   .0011889     1.63   0.104    -.0004028    .0042752
                      |
         pct_medicaid |
                  D1. |   .0004412    .001004     0.44   0.661    -.0015342    .0024166
                      |
         pct_medicare |
                  D1. |   .0018019   .0011286     1.60   0.111    -.0004186    .0040223
                      |
       county_HHI_all |
                  D1. |   1.77e-06   5.29e-06     0.33   0.738    -8.63e-06    .0000122
                      |
        purchasegroup |
                  D1. |   .0070085   .0115273     0.61   0.544    -.0156709     .029688
                      |
    backfill_academic |
                  D1. |          0  (omitted)
                      |
      backfill_profit |
                  D1. |          0  (omitted)
                      |
            religious |
                  D1. |          0  (omitted)
                      |
       specialty_hosp |
                  D1. |          0  (omitted)
                      |
                rural |
                  D1. |          0  (omitted)
                      |
                _cons |   .0119001   .0032821     3.63   0.000     .0054426    .0183575
    -----------------------------------------------------------------------------------
    
    Absorbed degrees of freedom:
    -----------------------------------------------------+
     Absorbed FE | Categories  - Redundant  = Num. Coefs |
    -------------+---------------------------------------|
            cbsa |       451           0         451     |
       data_year |         8           1           7     |
           sysid |       319         319           0    *|
    -----------------------------------------------------+
    * = FE nested within cluster; treated as redundant for DoF computation

  • #2
    You have more than 2 time periods right?

    In your second regression, you have run a fixed-effects regression on a model that you have already first-differenced. I would replace your second model by OLS run on a first-differenced regression:

    Code:
     
     reg d.(IIC_110_hosp_new iv lrev cmi growth_bedsize bedsize num acqd age_all_apps age_all_apps2 pct_medicaid pct_medicare county_HHI_all purchas > egroup backfill_academic backfill_profit religious specialty_hosp rural) i.cbsa i.data_year, cluster(sysid)
    Not 100% sure about i.cbsa i.data_year, but that would be the idea. If cbsa it will drop due to the first-differenced.

    Side note: your dependent variable is binary, you may want to compare OLS with non-linear models marginal effects.

    Comment

    Working...
    X