Good morning,
I am using reghdfe in Stata 16.1 for Windows.
I have a panel dataset with about 10,000 observations. My dependent variable (IIC_110_hosp_new) and independent variable of interest (iv) are both indicator variables. I find a significant relation in levels but not in differences. I have seen several posts with this same question but no suggestions as to why the relation would not hold in differences as expected.
Any guidance is much appreciated. Thanks,
Ginger
I am using reghdfe in Stata 16.1 for Windows.
I have a panel dataset with about 10,000 observations. My dependent variable (IIC_110_hosp_new) and independent variable of interest (iv) are both indicator variables. I find a significant relation in levels but not in differences. I have seen several posts with this same question but no suggestions as to why the relation would not hold in differences as expected.
Any guidance is much appreciated. Thanks,
Ginger
Code:
reghdfe IIC_110_hosp_new iv lrev cmi growth_bedsize bedsize num acqd age_all_apps age_all_apps2 pct_medicaid pct_medicare county_HHI_all purchasegrou > p backfill_academic backfill_profit religious specialty_hosp rural, absorb (cbsa data_year sysid) cluster(sysid) (MWFE estimator converged in 56 iterations) HDFE Linear regression Number of obs = 10,775 Absorbing 3 HDFE groups F( 18, 347) = 7.43 Statistics robust to heteroskedasticity Prob > F = 0.0000 R-squared = 0.6484 Adj R-squared = 0.6184 Within R-sq. = 0.0515 Number of clusters (sysid) = 348 Root MSE = 0.3055 (Std. Err. adjusted for 348 clusters in sysid) ----------------------------------------------------------------------------------- | Robust IIC_110_hosp_new | Coef. Std. Err. t P>|t| [95% Conf. Interval] ------------------+---------------------------------------------------------------- iv | .0909766 .0170995 5.32 0.000 .0573449 .1246082 lrev | .0181682 .0145263 1.25 0.212 -.0104025 .0467389 cmi | -.0213183 .0423344 -0.50 0.615 -.1045827 .0619461 growth_bedsize | -.008643 .0234295 -0.37 0.712 -.0547247 .0374386 bedsize | .0001105 .0000595 1.86 0.064 -6.55e-06 .0002276 num | .0017873 .001612 1.11 0.268 -.0013832 .0049578 acqd | -.2150124 .0452321 -4.75 0.000 -.303976 -.1260489 age_all_apps | .0173815 .0167258 1.04 0.299 -.0155151 .0502782 age_all_apps2 | -.0015197 .0009383 -1.62 0.106 -.0033652 .0003257 pct_medicaid | .0003359 .0011223 0.30 0.765 -.0018714 .0025433 pct_medicare | .0005903 .0008958 0.66 0.510 -.0011715 .0023521 county_HHI_all | -5.01e-06 3.99e-06 -1.25 0.211 -.0000129 2.85e-06 purchasegroup | .0118717 .0181146 0.66 0.513 -.0237565 .0474999 backfill_academic | -.0073197 .0166686 -0.44 0.661 -.0401039 .0254646 backfill_profit | .0179319 .0445519 0.40 0.688 -.0696938 .1055576 religious | .0331071 .0200178 1.65 0.099 -.0062644 .0724786 specialty_hosp | -.0140059 .0606577 -0.23 0.818 -.1333089 .105297 rural | .0170688 .034588 0.49 0.622 -.0509598 .0850973 _cons | .2103599 .2029035 1.04 0.301 -.1887156 .6094354 ----------------------------------------------------------------------------------- Absorbed degrees of freedom: -----------------------------------------------------+ Absorbed FE | Categories - Redundant = Num. Coefs | -------------+---------------------------------------| cbsa | 475 0 475 | data_year | 9 1 8 | sysid | 348 348 0 *| -----------------------------------------------------+ * = FE nested within cluster; treated as redundant for DoF computation . . reghdfe d.IIC_110_hosp_new d.(iv lrev cmi growth_bedsize bedsize num acqd age_all_apps age_all_apps2 pct_medicaid pct_medicare county_HHI_all purchas > egroup backfill_academic backfill_profit religious specialty_hosp rural), absorb (cbsa data_year sysid) cluster(sysid) (dropped 39 singleton observations) (MWFE estimator converged in 46 iterations) note: D.backfill_academic omitted because of collinearity note: D.backfill_profit omitted because of collinearity note: D.religious omitted because of collinearity note: D.specialty_hosp omitted because of collinearity note: D.rural omitted because of collinearity HDFE Linear regression Number of obs = 9,069 Absorbing 3 HDFE groups F( 13, 318) = 1.75 Statistics robust to heteroskedasticity Prob > F = 0.0508 R-squared = 0.0990 Adj R-squared = 0.0131 Within R-sq. = 0.0226 Number of clusters (sysid) = 319 Root MSE = 0.2860 (Std. Err. adjusted for 319 clusters in sysid) ----------------------------------------------------------------------------------- D. | Robust IIC_110_hosp_new | Coef. Std. Err. t P>|t| [95% Conf. Interval] ------------------+---------------------------------------------------------------- iv | D1. | -.0050465 .0112212 -0.45 0.653 -.0271237 .0170307 | lrev | D1. | .0094508 .0119898 0.79 0.431 -.0141384 .0330401 | cmi | D1. | .0615533 .0611378 1.01 0.315 -.0587324 .181839 | growth_bedsize | D1. | .0034839 .0137963 0.25 0.801 -.0236598 .0306275 | bedsize | D1. | .0000669 .0001486 0.45 0.653 -.0002255 .0003593 | num | D1. | -.0004232 .0007383 -0.57 0.567 -.0018758 .0010294 | acqd | D1. | -.1594614 .0378615 -4.21 0.000 -.233952 -.0849708 | age_all_apps | D1. | -.0424908 .0204681 -2.08 0.039 -.0827608 -.0022209 | age_all_apps2 | D1. | .0019362 .0011889 1.63 0.104 -.0004028 .0042752 | pct_medicaid | D1. | .0004412 .001004 0.44 0.661 -.0015342 .0024166 | pct_medicare | D1. | .0018019 .0011286 1.60 0.111 -.0004186 .0040223 | county_HHI_all | D1. | 1.77e-06 5.29e-06 0.33 0.738 -8.63e-06 .0000122 | purchasegroup | D1. | .0070085 .0115273 0.61 0.544 -.0156709 .029688 | backfill_academic | D1. | 0 (omitted) | backfill_profit | D1. | 0 (omitted) | religious | D1. | 0 (omitted) | specialty_hosp | D1. | 0 (omitted) | rural | D1. | 0 (omitted) | _cons | .0119001 .0032821 3.63 0.000 .0054426 .0183575 ----------------------------------------------------------------------------------- Absorbed degrees of freedom: -----------------------------------------------------+ Absorbed FE | Categories - Redundant = Num. Coefs | -------------+---------------------------------------| cbsa | 451 0 451 | data_year | 8 1 7 | sysid | 319 319 0 *| -----------------------------------------------------+ * = FE nested within cluster; treated as redundant for DoF computation
Comment