E]
* Example generated by -dataex-. To install: ssc install dataex
clear
input int yoa byte(ipd nvt vt) int bcd float midyrpop str3 spn_serotype byte n str12 type byte _merge float(time vaxera vaxera2017 postslope postslope2017 vacc bcdcn)
1999 24 8 16 3490 33620 "13" 0 "non-vaccine" 3 1 0 0 0 0 0 3466
2000 47 12 35 3482 34505 "13" 1 "non-vaccine" 3 2 0 0 0 0 0 3435
2001 46 14 32 3394 35411 "13" 1 "non-vaccine" 3 3 0 0 0 0 0 3348
2002 28 4 24 2286 36340 "13" 0 "non-vaccine" 3 4 0 0 0 0 0 2258
2003 47 9 38 2634 39747 "13" 0 "non-vaccine" 3 5 0 0 0 0 0 2587
2004 36 11 25 2524 41985 "13" 0 "non-vaccine" 3 6 0 0 0 0 0 2488
2005 31 12 19 2109 42738 "13" 0 "non-vaccine" 3 7 0 0 0 0 0 2078
2006 23 9 14 2269 43916 "13" 0 "non-vaccine" 3 8 0 0 0 0 0 2246
2007 34 8 26 1832 44536 "13" 0 "non-vaccine" 3 9 0 0 0 0 0 1798
2008 19 3 16 1687 44820 "13" 0 "non-vaccine" 3 10 0 0 0 0 0 1668
2009 20 5 15 1879 46343 "13" 0 "non-vaccine" 3 11 0 0 0 0 0 1859
2010 46 7 39 1648 47714 "13" 0 "non-vaccine" 3 12 0 0 0 0 0 1602
2011 16 5 11 1438 46961.64 "13" 0 "non-vaccine" 3 13 . 0 0 0 . 1422
2012 7 4 3 1017 40730.05 "13" 0 "non-vaccine" 3 14 1 0 1 0 1 1010
2013 4 4 0 805 43214.2 "13" 0 "non-vaccine" 3 15 1 0 2 0 1 801
2014 10 9 1 1274 47807 "13" 0 "non-vaccine" 3 16 1 0 3 0 1 1264
2015 9 7 2 1228 47921 "13" 0 "non-vaccine" 3 17 1 0 4 0 1 1219
2016 4 3 1 1029 42048.97 "13" 0 "non-vaccine" 3 18 1 0 5 0 1 1025
2017 2 2 0 365 18128.926 "13" 0 "non-vaccine" 3 19 1 1 6 1 2 363
2018 6 2 4 1005 46210 "13" 0 "non-vaccine" 3 20 1 1 7 2 2 999
2019 6 5 1 1122 45972 "13" 2 "non-vaccine" 3 21 1 1 8 3 2 1116
end
label values _merge _merge
label def _merge 3 "matched (3)", modify
[/CODE]
------------------ copy up to and including the previous line ------------------
Listed 21 out of 21 observations
Dear team,
Can someone tell me why I get ver large IRR when I adjust for time in my model? below is my code
**unadjusted
nbreg n i.vacc, irr exp(midyrpop)
**final model(adjusted bcd control)
nbreg n i.vacc,irr exp(bcdcn) diff
**segmented
nbreg n i.vacc time, irr exp(midyrpop)
I have tried even zero inflated negative binomial but the irr is even worse
zinb n i.vacc time, irr exp(midyrpop) inflate(nvt) diff
What can I do to solve this.we discussed with my principal statistician to adjust for time in all serotype specific analysis.Am only having problem with this serotype
* Example generated by -dataex-. To install: ssc install dataex
clear
input int yoa byte(ipd nvt vt) int bcd float midyrpop str3 spn_serotype byte n str12 type byte _merge float(time vaxera vaxera2017 postslope postslope2017 vacc bcdcn)
1999 24 8 16 3490 33620 "13" 0 "non-vaccine" 3 1 0 0 0 0 0 3466
2000 47 12 35 3482 34505 "13" 1 "non-vaccine" 3 2 0 0 0 0 0 3435
2001 46 14 32 3394 35411 "13" 1 "non-vaccine" 3 3 0 0 0 0 0 3348
2002 28 4 24 2286 36340 "13" 0 "non-vaccine" 3 4 0 0 0 0 0 2258
2003 47 9 38 2634 39747 "13" 0 "non-vaccine" 3 5 0 0 0 0 0 2587
2004 36 11 25 2524 41985 "13" 0 "non-vaccine" 3 6 0 0 0 0 0 2488
2005 31 12 19 2109 42738 "13" 0 "non-vaccine" 3 7 0 0 0 0 0 2078
2006 23 9 14 2269 43916 "13" 0 "non-vaccine" 3 8 0 0 0 0 0 2246
2007 34 8 26 1832 44536 "13" 0 "non-vaccine" 3 9 0 0 0 0 0 1798
2008 19 3 16 1687 44820 "13" 0 "non-vaccine" 3 10 0 0 0 0 0 1668
2009 20 5 15 1879 46343 "13" 0 "non-vaccine" 3 11 0 0 0 0 0 1859
2010 46 7 39 1648 47714 "13" 0 "non-vaccine" 3 12 0 0 0 0 0 1602
2011 16 5 11 1438 46961.64 "13" 0 "non-vaccine" 3 13 . 0 0 0 . 1422
2012 7 4 3 1017 40730.05 "13" 0 "non-vaccine" 3 14 1 0 1 0 1 1010
2013 4 4 0 805 43214.2 "13" 0 "non-vaccine" 3 15 1 0 2 0 1 801
2014 10 9 1 1274 47807 "13" 0 "non-vaccine" 3 16 1 0 3 0 1 1264
2015 9 7 2 1228 47921 "13" 0 "non-vaccine" 3 17 1 0 4 0 1 1219
2016 4 3 1 1029 42048.97 "13" 0 "non-vaccine" 3 18 1 0 5 0 1 1025
2017 2 2 0 365 18128.926 "13" 0 "non-vaccine" 3 19 1 1 6 1 2 363
2018 6 2 4 1005 46210 "13" 0 "non-vaccine" 3 20 1 1 7 2 2 999
2019 6 5 1 1122 45972 "13" 2 "non-vaccine" 3 21 1 1 8 3 2 1116
end
label values _merge _merge
label def _merge 3 "matched (3)", modify
[/CODE]
------------------ copy up to and including the previous line ------------------
Listed 21 out of 21 observations
Dear team,
Can someone tell me why I get ver large IRR when I adjust for time in my model? below is my code
**unadjusted
nbreg n i.vacc, irr exp(midyrpop)
**final model(adjusted bcd control)
nbreg n i.vacc,irr exp(bcdcn) diff
**segmented
nbreg n i.vacc time, irr exp(midyrpop)
I have tried even zero inflated negative binomial but the irr is even worse
zinb n i.vacc time, irr exp(midyrpop) inflate(nvt) diff
What can I do to solve this.we discussed with my principal statistician to adjust for time in all serotype specific analysis.Am only having problem with this serotype
Comment