Hi,
My research is studying the relationship between certain policy A which is implemented in some states in the U.S. and cash. The method I use is staggered DiD. The panel data covers all the companies and last for past 20 years. I run the regression adding industry and year FE, using -xtreg and -reghdfe, but the outcomes are totally different. Anyone please tell me why?
. xtreg cash1_w treat_post_lag1 treat_lag1 $control i.sic2 i.fyear
Random-effects GLS regression Number of obs = 93,372
Group variable: gvkey_n Number of groups = 10,810
R-squared: Obs per group:
Within = 0.0415 min = 1
Between = 0.3557 avg = 8.6
Overall = 0.3191 max = 23
Wald chi2(107) = .
corr(u_i, X) = 0 (assumed) Prob > chi2 = .
cash1_w Coefficient Std. err. z P>z [95% conf. interval]
treat_post_lag1 -.0063499 .0020443 -3.11 0.002 -.0103566 -.0023431
treat_lag1 .0495724 .0032204 15.39 0.000 .0432606 .0558842
. reghdfe cash1_w treat_post_lag1 treat_lag1 $control, absorb(fyear sic2)
(MWFE estimator converged in 5 iterations)
HDFE Linear regression Number of obs = 93,372
Absorbing 2 HDFE groups F( 14, 93264) = 1380.62
Prob > F = 0.0000
R-squared = 0.3598
Adj R-squared = 0.3591
Within R-sq. = 0.1717
Root MSE = 0.1833
cash1_w Coefficient Std. err. t P>t [95% conf. interval]
treat_lag1 .0459218 .0015755 29.15 0.000 .0428338 .0490099
treat_post_lag1 .0222396 .0022449 9.91 0.000 .0178397 .0266395
My data sample is as follows:
Thanks,
Eva
My research is studying the relationship between certain policy A which is implemented in some states in the U.S. and cash. The method I use is staggered DiD. The panel data covers all the companies and last for past 20 years. I run the regression adding industry and year FE, using -xtreg and -reghdfe, but the outcomes are totally different. Anyone please tell me why?
. xtreg cash1_w treat_post_lag1 treat_lag1 $control i.sic2 i.fyear
Random-effects GLS regression Number of obs = 93,372
Group variable: gvkey_n Number of groups = 10,810
R-squared: Obs per group:
Within = 0.0415 min = 1
Between = 0.3557 avg = 8.6
Overall = 0.3191 max = 23
Wald chi2(107) = .
corr(u_i, X) = 0 (assumed) Prob > chi2 = .
cash1_w Coefficient Std. err. z P>z [95% conf. interval]
treat_post_lag1 -.0063499 .0020443 -3.11 0.002 -.0103566 -.0023431
treat_lag1 .0495724 .0032204 15.39 0.000 .0432606 .0558842
. reghdfe cash1_w treat_post_lag1 treat_lag1 $control, absorb(fyear sic2)
(MWFE estimator converged in 5 iterations)
HDFE Linear regression Number of obs = 93,372
Absorbing 2 HDFE groups F( 14, 93264) = 1380.62
Prob > F = 0.0000
R-squared = 0.3598
Adj R-squared = 0.3591
Within R-sq. = 0.1717
Root MSE = 0.1833
cash1_w Coefficient Std. err. t P>t [95% conf. interval]
treat_lag1 .0459218 .0015755 29.15 0.000 .0428338 .0490099
treat_post_lag1 .0222396 .0022449 9.91 0.000 .0178397 .0266395
My data sample is as follows:
Code:
* Example generated by -dataex-. For more info, type help dataex clear input float(cash1_w treat_post_lag1) byte sic2 long gvkey_n double fyear .011353784 . 50 1004 1998 .0016747684 0 50 1004 1999 .01967503 0 50 1004 2000 .04860891 0 50 1004 2001 .04246011 0 50 1004 2002 .05781822 0 50 1004 2003 .06874616 0 50 1004 2004 .12437233 0 50 1004 2005 .078039 0 50 1004 2006 .08255079 0 50 1004 2007 .08167267 0 50 1004 2008 .0528766 0 50 1004 2009 .03371021 0 50 1004 2010 .03084276 0 50 1004 2011 .03523796 0 50 1004 2012 .04055467 0 50 1004 2013 .03610561 0 50 1004 2014 .021635115 0 50 1004 2015 .006847949 0 50 1004 2016 .027284056 0 50 1004 2017 .027089376 0 50 1004 2018 .2042809 0 50 1004 2019 .03909853 0 50 1004 2020 .03742296 0 50 1004 2021 .1757913 . 36 1013 1999 .34106535 0 36 1013 2000 .16874024 0 36 1013 2001 .2441881 0 36 1013 2002 .57575756 0 36 1013 2003 .3512359 0 36 1013 2004 .29016286 0 36 1013 2005 .333685 0 36 1013 2006 .3296691 0 36 1013 2007 .328735 0 36 1013 2008 .3985561 0 36 1013 2009 .4726348 0 36 1013 2010 .017803518 . 38 1021 1999 .03738801 0 38 1021 2000 .022929937 0 38 1021 2001 .06573249 0 38 1021 2002 .1088683 0 38 1021 2003 .05316253 0 38 1021 2004 .04059855 0 38 1021 2005 .36350325 0 38 1021 2006 .033933237 0 38 1021 2007 .03826924 0 38 1021 2008 .015216338 . 28 1034 1999 .04528652 0 28 1034 2000 .006231778 0 28 1034 2001 .01039303 0 28 1034 2002 .02516799 0 28 1034 2003 .05250514 0 28 1034 2004 .4928042 0 28 1034 2005 .12204297 0 28 1034 2006 .2350809 0 28 1034 2007 .0435925 . 34 1036 2000 .007434944 . 36 1037 1998 .01726776 0 36 1037 1999 .05491919 0 36 1037 2000 .010746068 0 36 1037 2001 .036436863 . 50 1043 1999 .073479936 . 45 1045 1999 .08518674 0 45 1045 2000 .09110563 0 45 1045 2001 .09029637 0 45 1045 2002 .10681896 0 45 1045 2003 .11840962 0 45 1045 2004 .14660113 0 45 1045 2005 .17783496 0 45 1045 2006 .1737076 0 45 1045 2007 .14164846 0 45 1045 2008 .19101344 0 45 1045 2009 .19714604 0 45 1045 2010 .1987169 0 45 1045 2011 .2017014 0 45 1045 2012 .2432944 0 45 1045 2013 .18452857 0 45 1045 2014 .14352989 0 45 1045 2015 .13646293 0 45 1045 2016 .10475523 0 45 1045 2017 .08111588 0 45 1045 2018 .066405535 0 45 1045 2019 .1205167 0 45 1045 2020 .20191975 0 45 1045 2021 .001881357 . 49 1048 1999 .0005830904 0 49 1048 2000 0 0 49 1048 2001 0 0 49 1048 2002 .010836584 0 49 1048 2003 0 0 49 1048 2004 0 0 49 1048 2005 0 0 49 1048 2006 .07491238 . 35 1050 1999 .029805353 0 35 1050 2000 .0009994343 0 35 1050 2001 .0041562226 0 35 1050 2002 .012854158 0 35 1050 2003 .007803688 0 35 1050 2004 .007226107 0 35 1050 2005 .007042476 0 35 1050 2006 end
Eva
Comment