Dear profs and colleagues,
I am running this model. As you can see the Coefficient and std. err are super large. Do you know what is the reason and what can be done about that?
Cheers,
Paris
I am running this model. As you can see the Coefficient and std. err are super large. Do you know what is the reason and what can be done about that?
Code:
input float ln_mig_firm double firm_age float(foreign_aff region) byte per float(sector immi_sh S_emplo_sh impu_sh_origin S_emplo_iv) .6931472 3 1 3 0 9 .06990359 0 .024657136 0 2.0794415 151 0 1 0 3 .01748677 0 .019646525 0 1.0986123 85 1 3 0 7 .06990359 0 .024657136 0 1.0986123 38 1 3 0 7 .06990359 0 .024657136 0 1.0986123 37 1 3 0 6 .06990359 0 .024657136 0 1.3862944 81 1 2 0 3 .03521399 0 .018607123 0 .6931472 40 1 1 0 7 .01748677 0 .019646525 0 .6931472 53 1 5 0 3 .05653952 0 .005587324 0 1.94591 54 1 2 0 3 .03521399 0 .018607123 0 .6931472 52 1 3 0 13 .06990359 0 .024657136 0 .6931472 53 0 1 0 7 .01748677 0 .019646525 0 2.0794415 69 1 1 0 3 .01748677 0 .019646525 0 1.7917595 40 1 1 0 3 .01748677 0 .019646525 0 2.944439 39 1 3 0 9 .06990359 0 .024657136 0 1.3862944 51 1 1 0 3 .01748677 0 .019646525 0 3.367296 69 1 3 0 6 .06990359 0 .024657136 0 2.1972246 52 1 1 0 6 .01748677 0 .019646525 0 3.178054 37 1 3 0 6 .06990359 0 .024657136 0 .6931472 39 1 3 0 3 .06990359 0 .024657136 0 1.609438 22 1 3 0 9 .06990359 0 .024657136 0 .6931472 47 0 1 0 7 .01748677 0 .019646525 0 1.0986123 90 1 2 0 7 .03521399 0 .018607123 0 1.609438 43 1 4 0 13 .15849853 0 .010140276 0 1.0986123 51 1 2 0 11 .03521399 0 .018607123 0 .6931472 61 1 1 0 7 .01748677 0 .019646525 0 1.0986123 39 1 3 0 3 .06990359 0 .024657136 0 2.6390574 37 1 2 0 3 .03521399 0 .018607123 0 1.94591 36 1 2 0 3 .03521399 0 .018607123 0 2.397895 81 1 2 0 3 .03521399 0 .018607123 0 1.0986123 56 1 1 0 7 .01748677 0 .019646525 0 1.609438 40 1 1 0 3 .01748677 0 .019646525 0 3.4011974 71 1 3 0 9 .06990359 0 .024657136 0 2.0794415 38 1 3 0 7 .06990359 0 .024657136 0 .6931472 44 1 1 0 3 .01748677 0 .019646525 0 .6931472 36 1 2 0 3 .03521399 0 .018607123 0 1.609438 40 1 1 0 3 .01748677 0 .019646525 0 1.609438 44 0 3 0 3 .06990359 0 .024657136 0 2.397895 45 1 3 0 3 .06990359 0 .024657136 0 2.6390574 45 1 2 0 3 .03521399 0 .018607123 0 1.0986123 46 1 3 0 9 .06990359 0 .024657136 0 2.484907 46 0 1 0 3 .01748677 0 .019646525 0 xtivreg ln_mig_firm firm_age foreign_aff i.region#i.per i.sector#i.per (immi_sh S_emplo_sh= impu_sh_origin S_emplo_iv ) , fe first vce(robust) Fixed-effects (within) IV regression Number of obs = 15,213 Group variable: NPC_FIC Number of groups = 3,998 R-squared: Obs per group: Within = 0.0810 min = 1 Between = 0.0011 avg = 3.8 Overall = 0.0001 max = 10 Wald chi2(71) = 55406.90 corr(u_i, Xb) = -0.5211 Prob > chi2 = 0.0000 (Std. err. adjusted for 3,998 clusters in NPC_FIC) ------------------------------------------------------------------------------ | Robust ln_mig_firm | Coefficient std. err. z P>|z| [95% conf. interval] -------------+---------------------------------------------------------------- immi_sh | 66.08293 5.802629 11.39 0.000 54.70999 77.45587 S_emplo_sh | -12.28756 9.261594 -1.33 0.185 -30.43995 5.864832 firm_age | -.0292598 .0076699 -3.81 0.000 -.0442925 -.014227 foreign_aff | -.1434471 .0831989 -1.72 0.085 -.3065139 .0196198 | region#per | 1 1 | -.2850273 .253099 -1.13 0.260 -.7810923 .2110377
Paris
Comment