I have the following code working as intended:
However, the results show that many variables one would expect to be significant are not, for example human capital growth in the long run:
Upon further reading I realised that cross-sectional dependence may be a real problem in this dataset. For example, a common shock in this time period which is not controlled for is the 2007 Financial Crisis. I have been trying to use the command for testing for cross-sectional dependence below:
which outputs:
So this tells me I have cross-sectional dependence and should add cross-sectional averages to the command. However, running below causes the estimate of alpha to actually increase!
generates
Could someone please explain what the problem here is? How do I know which variables to include cross-sectional averages for?
Code:
xtdcce2 d.growth d.l(growth) d.l(0/1)(gfcfgdp employmentgrowth yearsedugrowth), /// lr(l.growth gfcfgdp employmentgrowth yearsedugrowth l.lngdpph) /// p(l.growth gfcfgdp employmentgrowth yearsedugrowth l.lngdpph) nocross
Code:
Units (cno) to be removed due to insufficient numbers of observations: 17 (Dynamic) Common Correlated Effects Estimator - Pooled Mean Group (CS-ECM) Panel Variable (i): cno Number of obs = 1166 Time Variable (t): year Number of groups = 31 Degrees of freedom per group: Obs per group: without cross-sectional avg. min = 4 min = 17 max = 32 avg = 40 with cross-sectional avg. min = 4 max = 45 max = 32 Number of F(253, 913) = 9.06 cross-sectional lags none Prob > F = 0.00 variables in mean group regression = 222 R-squared = 0.28 variables partialled out = 31 Adj. R-squared = 0.09 Root MSE = 1.93 CD Statistic = 37.05 p-value = 0.0000 ------------------------------------------------------------------------------------ D.growth| Coef. Std. Err. z P>|z| [95% Conf. Interval] --------------------+--------------------------------------------------------------- Short Run Est. | --------------------+--------------------------------------------------------------- Mean Group: | LD.growth| -.0538945 .0441897 -1.22 0.223 -.1405047 .0327157 D.gfcfgdp| .8163549 .0822089 9.93 0.000 .6552285 .9774814 LD.gfcfgdp| -.0743282 .0610556 -1.22 0.223 -.1939949 .0453385 D.employmentgrowth| .3011228 .067428 4.47 0.000 .1689662 .4332793 LD.employmentgrowth| .0174869 .0429406 0.41 0.684 -.0666751 .1016489 D.yearsedugrowth| -.2871611 .6437639 -0.45 0.656 -1.548915 .974593 LD.yearsedugrowth| .6205096 .4298602 1.44 0.149 -.2220009 1.46302 --------------------+--------------------------------------------------------------- Adjust. Term | --------------------+--------------------------------------------------------------- Pooled: | L.growth| -.7996822 .1247142 -6.41 0.000 -1.044118 -.5552469 --------------------+--------------------------------------------------------------- Long Run Est. | --------------------+--------------------------------------------------------------- Pooled: | gfcfgdp| .0392039 .0725913 0.54 0.589 -.1030724 .1814803 employmentgrowth| .3290876 .1407156 2.34 0.019 .0532901 .6048852 yearsedugrowth| .9766148 .9375461 1.04 0.298 -.8609419 2.814171 L.lngdpph| -2.366211 .5916889 -4.00 0.000 -3.5259 -1.206522 ------------------------------------------------------------------------------------ Pooled Variables: L.growth gfcfgdp employmentgrowth yearsedugrowth L.lngdpph Mean Group Variables: LD.growth D.gfcfgdp LD.gfcfgdp D.employmentgrowth LD.employmentgrowth D.yearsedugrowt > h LD.yearsedugrowth Long Run Variables: gfcfgdp employmentgrowth yearsedugrowth L.lngdpph Cointegration variable(s): L.growth Heterogenous constant partialled out.
Code:
xtcse2, res
Code:
Cross-Sectional Dependence Exponent Estimation and Test Panel Variable (i): cno Time Variable (t): year Estimation of Cross-Sectional Exponent (alpha) ---------------------------------------------------------------- variable| alpha Std. Err. [95% Conf. Interval] ---------------+------------------------------------------------ residuals| .549541 . . . ---------------------------------------------------------------- 0.5 <= alpha < 1 implies strong cross-sectional dependence. SE and CI not available. Use option reps() to bootstrap SE and CI. Residuals calculated using predict, residuals from xtdcce2. Unbalanced panel detected, test adjusted. Missing values imputed for CD*. Testing for weak cross-sectional dependence (CSD) H0: weak cross-section dependence H1: strong cross-section dependence ------------------------------------------------------------------------ | CD CDw CDw+ CD* ---------------+-------------------------------------------------------- residuals | 37.05 1.23 955.96 20.43 | (0.000) (0.220) (0.000) (0.000) ------------------------------------------------------------------------ p-values in parenthesis.
Code:
xtdcce2 d.growth d.l(growth) d.l(0/1)(gfcfgdp employmentgrowth yearsedugrowth), /// lr(l.growth gfcfgdp employmentgrowth yearsedugrowth l.lngdpph) /// p(l.growth gfcfgdp employmentgrowth yearsedugrowth l.lngdpph) cr(growth l.lngdpph) cr_lags(3) xtcse2, res lags(3)
Code:
Cross-Sectional Dependence Exponent Estimation and Test Panel Variable (i): cno Time Variable (t): year Estimation of Cross-Sectional Exponent (alpha) ---------------------------------------------------------------- variable| alpha Std. Err. [95% Conf. Interval] ---------------+------------------------------------------------ residuals| .7663756 . . . ---------------------------------------------------------------- 0.5 <= alpha < 1 implies strong cross-sectional dependence. SE and CI not available. Use option reps() to bootstrap SE and CI. Residuals calculated using predict, residuals from xtdcce2. Unbalanced panel detected, test adjusted. Missing values imputed for CD*. Testing for weak cross-sectional dependence (CSD) H0: weak cross-section dependence H1: strong cross-section dependence ------------------------------------------------------------------------ | CD CDw CDw+ CD* ---------------+-------------------------------------------------------- residuals | 1.64 -2.10 459.23 7.52 | (0.101) (0.036) (0.000) (0.000) ------------------------------------------------------------------------ p-values in parenthesis.
Comment