I'm trying to understand how `areg` works. I'm attempting to replicate it - I'm able to get the expected coefficients, but different standard errors. What am I missing?
Code:
. sysuse auto, clear (1978 automobile data) . drop if missing(rep78) (5 observations deleted) . . . reg mpg weight gear_ratio i.rep78 Source | SS df MS Number of obs = 69 -------------+---------------------------------- F(6, 62) = 21.31 Model | 1575.97621 6 262.662702 Prob > F = 0.0000 Residual | 764.226686 62 12.3262369 R-squared = 0.6734 -------------+---------------------------------- Adj R-squared = 0.6418 Total | 2340.2029 68 34.4147485 Root MSE = 3.5109 ------------------------------------------------------------------------------ mpg | Coefficient Std. err. t P>|t| [95% conf. interval] -------------+---------------------------------------------------------------- weight | -.0051031 .0009206 -5.54 0.000 -.0069433 -.003263 gear_ratio | .901478 1.565552 0.58 0.567 -2.228015 4.030971 | rep78 | 2 | -.3828844 2.784787 -0.14 0.891 -5.949594 5.183825 3 | -.5204951 2.568204 -0.20 0.840 -5.654262 4.613272 4 | -.7514522 2.633873 -0.29 0.776 -6.01649 4.513585 5 | 2.036937 2.740728 0.74 0.460 -3.4417 7.515574 | _cons | 34.20089 7.387405 4.63 0.000 19.43367 48.9681 ------------------------------------------------------------------------------ . areg mpg weight gear_ratio, absorb(rep78) Linear regression, absorbing indicators Number of obs = 69 Absorbed variable: rep78 No. of categories = 5 F(2, 62) = 41.64 Prob > F = 0.0000 R-squared = 0.6734 Adj R-squared = 0.6418 Root MSE = 3.5109 ------------------------------------------------------------------------------ mpg | Coefficient Std. err. t P>|t| [95% conf. interval] -------------+---------------------------------------------------------------- weight | -.0051031 .0009206 -5.54 0.000 -.0069433 -.003263 gear_ratio | .901478 1.565552 0.58 0.567 -2.228015 4.030971 _cons | 34.05889 7.056383 4.83 0.000 19.95338 48.1644 ------------------------------------------------------------------------------ F test of absorbed indicators: F(4, 62) = 1.117 Prob > F = 0.356 . . foreach var of varlist mpg weight gear_ratio { 2. egen mean`var' = mean(`var'), by(rep78) 3. egen mean`var'overall = mean(`var') 4. gen `var'c = `var' - mean`var' + mean`var'overall 5. drop mean`var' mean`var'overall 6. } . reg mpgc weightc gear_ratioc Source | SS df MS Number of obs = 69 -------------+---------------------------------- F(2, 66) = 44.33 Model | 1026.56042 2 513.280211 Prob > F = 0.0000 Residual | 764.226699 66 11.5791924 R-squared = 0.5732 -------------+---------------------------------- Adj R-squared = 0.5603 Total | 1790.78712 68 26.3351047 Root MSE = 3.4028 ------------------------------------------------------------------------------ mpgc | Coefficient Std. err. t P>|t| [95% conf. interval] -------------+---------------------------------------------------------------- weightc | -.0051031 .0008922 -5.72 0.000 -.0068845 -.0033217 gear_ratioc | .9014782 1.517369 0.59 0.554 -2.128047 3.931004 _cons | 34.05889 6.839212 4.98 0.000 20.40396 47.71382 ------------------------------------------------------------------------------
Comment