Hey there,
I'm working on data from my patients (n=150)
I have almost 30 variables and an ordinal outcome with 4 categories (liver steatosis) (I also have 2 other similar outcomes)
I don't know why when I perform an ordinal regression with backward elimination, I receive ORs as large as even 8000!
Does anybody know what am I doing wrong?
Here is a sample of my data:
This is my code:
And this is my result:
I'm working on data from my patients (n=150)
I have almost 30 variables and an ordinal outcome with 4 categories (liver steatosis) (I also have 2 other similar outcomes)
I don't know why when I perform an ordinal regression with backward elimination, I receive ORs as large as even 8000!
Does anybody know what am I doing wrong?
Here is a sample of my data:
Code:
* Example generated by -dataex-. For more info, type help dataex clear input byte(Gender Married Employment University_degree Age_group BMI_cat) double(ALK_p INR) byte(Emotionaleater Sono_Grade Bx_Steatohepatitis) 1 2 1 1 3 5 175 1.01 2 2 1 1 . . . 1 6 217 1 . 3 0 1 . . . 1 6 . . . 0 0 1 2 1 1 1 6 . 1 1 1 0 1 . . . 2 6 181 1 . 2 1 1 2 1 1 2 6 197 1.2 2 2 2 1 1 1 2 1 6 92 1 1 0 1 1 2 1 1 3 6 210 1 2 2 1 2 2 2 1 2 4 203 . 1 0 1 1 . . . 3 5 144 . . 2 0 1 . . . 2 6 170 . . 2 0 1 . . . 2 4 141 1 . 1 0 2 1 2 1 1 6 209 1.1 1 1 1 1 2 1 1 3 6 124 1 2 0 1 2 1 2 1 1 6 202 1 1 3 1 1 2 1 1 3 6 171 1 2 2 2 1 2 1 1 2 6 217 1 2 1 0 1 1 1 1 1 6 176 1 2 1 0 1 . . . 2 6 77 1.1 . 2 0 2 . . . 3 6 178 1.3 . 2 1 1 2 2 1 2 5 150 1 2 3 1 1 1 2 2 2 4 17 1 2 1 1 1 . . . 1 6 163 1 . 3 1 1 . . . 3 6 158 1.2 . 3 . 1 . . . 2 5 261 1 . 1 0 1 2 1 1 1 4 142 1.24 2 2 1 2 . . . 1 6 . 1.13 . 2 0 1 2 1 1 1 6 188 . 2 0 0 1 2 1 1 3 6 151 1 2 1 1 1 . . . 2 4 274 1.31 . 0 1 1 . . . 1 5 219 . . 0 . 1 2 1 1 2 6 144 1 2 0 1 1 . . . 1 6 224 1 . 2 0 2 1 2 1 2 6 194 1.1 1 2 1 1 . . . 4 5 177 . . 1 . 1 . . . 1 6 156 1.05 . 0 0 2 1 2 1 1 6 266 1.23 1 3 1 1 1 1 1 1 6 . . 2 0 . 1 2 1 1 3 6 211 1 2 3 1 1 2 2 2 4 5 129 .1 2 2 1 2 1 2 1 2 5 128 1 2 3 0 2 . . . 1 5 137 . . 2 1 1 . . . 2 6 146 1.5 . 1 . 1 2 1 1 1 6 228 1 2 2 1 2 2 2 1 4 6 305 1 1 2 0 2 . . . 2 6 252 1.4 . 3 . 1 2 1 1 2 5 122 1 1 2 1 2 2 2 1 2 6 . 1.08 2 3 . 2 2 2 1 2 6 . 1 1 2 1 2 2 2 1 3 5 171 1 2 0 1 2 2 2 1 3 6 133 . 1 3 . 1 2 1 1 4 5 181 1 1 3 1 1 2 1 1 3 4 . . 2 3 . 1 2 1 1 4 6 . . 1 3 . 2 2 2 1 2 4 . 1.1 2 2 0 2 2 2 1 2 6 245 1 2 3 1 1 1 2 1 1 4 121 1 2 2 1 2 2 2 1 3 6 . 1.11 1 3 1 1 2 1 1 3 5 54 .86 2 2 1 1 2 2 2 3 5 246 . 1 2 . 1 1 2 1 1 6 134 1 2 1 . 2 2 2 1 1 6 93 1 2 3 1 1 1 2 1 1 5 171 1 2 2 1 1 2 1 2 2 5 66 . 2 2 . 2 2 2 2 2 5 106 1 1 2 . 2 1 2 1 2 5 245 1.1 2 3 . 2 1 2 1 2 6 179 1 1 3 . 2 1 2 1 2 5 . 1 1 2 . 1 1 2 1 1 5 124 1 2 1 1 1 1 1 1 1 5 150 . 1 1 1 1 1 1 1 4 6 250 1 1 2 . 1 2 1 1 4 6 190 1 1 2 2 1 1 1 1 1 6 246 1 2 3 . 1 2 1 1 4 6 . 1 1 1 0 1 1 1 1 2 6 136 . 2 2 . 2 2 2 1 2 5 83 1 2 2 . 2 2 2 1 2 6 177 1.17 2 0 1 1 2 1 1 3 5 194 1 2 2 1 1 2 2 1 2 6 . 1 2 3 1 1 2 2 2 2 6 185 1 1 1 0 1 2 2 1 1 5 176 1 2 2 0 1 2 1 1 2 6 240 1 2 2 1 1 2 1 1 1 6 127 1 2 1 1 2 2 2 1 3 6 181 1 1 3 0 1 2 1 1 1 5 252.5 1 2 2 0 2 1 2 1 2 6 142 1.1 2 1 . 1 1 1 2 1 5 197 1 1 0 . 2 1 2 1 2 6 254 1 1 2 0 1 1 1 1 4 6 179 1.1 2 1 . 1 2 1 1 3 6 249 1 2 2 . 1 2 2 1 2 6 131 1 2 2 . 1 2 1 1 4 6 316 1.1 2 0 . 1 2 1 1 4 6 179 1 2 2 2 1 2 1 1 4 5 231 1 2 2 1 1 1 2 1 2 6 154 1 2 0 . 1 2 1 2 2 6 18 . 1 1 1 1 2 2 2 2 6 137 1 1 1 . 2 2 2 1 3 6 189 1 2 2 . 1 1 1 1 2 6 194 1 2 2 . 1 1 2 1 2 6 176 1 1 1 . end label values Gender labels0 label def labels0 1 "Female", modify label def labels0 2 "Male", modify label values Married labels1 label values University_degree labels1 label def labels1 1 "No", modify label def labels1 2 "Yes", modify label values Employment labels2 label def labels2 1 "No", modify label def labels2 2 "Yes", modify label values Age_group labels3 label def labels3 1 "19-30", modify label def labels3 2 "31-40", modify label def labels3 3 "41-50", modify label def labels3 4 ">50", modify label values BMI_cat labels4 label def labels4 4 "Obesity class I", modify label def labels4 5 "Obesity class II", modify label def labels4 6 "Obesity class III", modify label values Emotionaleater labels14 label def labels14 1 "No", modify label def labels14 2 "Yes", modify label values Bx_Steatohepatitis labels19 label def labels19 0 "Minimal", modify label def labels19 1 "Mild", modify label def labels19 2 "Moderate", modify
This is my code:
Code:
stepwise, pr(0.3) : ologit Bx_Steatohepatitis i.Age_group i.BMI_cat Gender Married Employment University_degree Smoke Alcohol T2DM Hypo_Thyroid HLP HTN CVD Sweeteater Volumeeater Emotionaleater Snackernibbling Cancer_F HTN_F T2DM_F i.Sono_Grade SGOT SGPT ALK_p, or
And this is my result:
Bx_Steatohepatitis | Odds ratio | Std. err. | z | P>z | [95% conf. | interval] |
Age_group | ||||||
31-40 | 3.997381 | 4.217089 | 1.31 | 0.189 | .5055795 | 31.60542 |
>50 | 50.54159 | 87.94102 | 2.25 | 0.024 | 1.669479 | 1530.09 |
2.Sono_Grade | 2.85757 | 2.601264 | 1.15 | 0.249 | .4798913 | 17.01574 |
CVD | 71.35374 | 172.0147 | 1.77 | 0.077 | .6329919 | 8043.32 |
ALK_p | .9761676 | .0107919 | -2.18 | 0.029 | .9552434 | .99755 |
Gender | 16.21916 | 29.71174 | 1.52 | 0.128 | .4474235 | 587.9463 |
Married | .0912319 | .1329141 | -1.64 | 0.100 | .0052486 | 1.585796 |
Employment | .0104316 | .019311 | -2.46 | 0.014 | .0002771 | .3927363 |
University_degree | .0146786 | .0255267 | -2.43 | 0.015 | .0004858 | .4435643 |
Smoke | .0063704 | .0115658 | -2.78 | 0.005 | .0001814 | .2236534 |
SGPT | 1.036996 | .0231966 | 1.62 | 0.104 | .9925136 | 1.083472 |
T2DM | .134202 | .2045136 | -1.32 | 0.188 | .0067701 | 2.660268 |
HTN_F | 16.57867 | 19.52767 | 2.38 | 0.017 | 1.647922 | 166.7871 |
HLP | .039629 | .0843666 | -1.52 | 0.129 | .0006108 | 2.571254 |
HTN | 30.4704 | 40.1952 | 2.59 | 0.010 | 2.296207 | 404.3388 |
Comment