Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • Compare two coefficients from two separate regressions

    Dear Statalist, I would like to know if it is possible to compare two different coefficients from two separate regressions in which the dep variable is the same and the sample of firms from the two regressions are also the same. The change is in the indep variables even though they are standardized. So, I have the first regression (see below) with variables intra and inter which are the expenditures of a group of firms at the sectoral level. Thereafter, I calculate the same variables but this time for other group of firms (second regression below) and name the indep variables as newintra and newinter. Both regressions are done over the same sample of firms. The coefficient of interest are cL.x#cL.intra3 from the first regression and cL.x#cL.newintra3 from the second one. You can see that the coefficient for cL.x#cL.intra3 is half from the coefficient for cL.x#cL.newintra3, and this latter coefficient (cL.x#cL.newintra3) is above the 95% confidence interval from the first coefficient (cL.x#cL.intra3). Can I use this fact to highlight the possibility of these two coefficients being statistically different? Or should I need to do a test for that? In such a case, how can this test be done?

    Thanks in advance!

    Code:
    HDFE Linear regression                            Number of obs   =     37,172
    Absorbing 2 HDFE groups                           F(  13,     31) =       3.93
    Statistics robust to heteroskedasticity           Prob > F        =     0.0009
                                                      R-squared       =     0.0514
                                                      Adj R-squared   =    -0.0828
                                                      Within R-sq.    =     0.0004
    Number of clusters (sectors) =         32      Root MSE        =     3.8428
    
                                  (Std. Err. adjusted for 32 clusters in sectors)
    --------------------------------------------------------------------------------
                   |               Robust
                 y |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
    ---------------+----------------------------------------------------------------
                 x |
               L1. |   .1281176   .2443026     0.52   0.604    -.3701408     .626376
                   |
            intra1 |
               L1. |   .0511315   .0426808     1.20   0.240    -.0359165    .1381795
                   |
            intra2 |
               L1. |   .0121387   .0502433     0.24   0.811    -.0903332    .1146106
                   |
            intra3 |
               L1. |  -.0380906    .043149    -0.88   0.384    -.1260936    .0499124
                   |
            inter1 |
               L1. |   .3097762   .2404039     1.29   0.207    -.1805308    .8000832
                   |
            inter2 |
               L1. |  -.1675679   .0938318    -1.79   0.084    -.3589391    .0238032
                   |
            inter3 |
               L1. |   .0384597   .0354421     1.09   0.286    -.0338249    .1107444
                   |
    cL.x#cL.intra1 |   .6758195   .3186679     2.12   0.042     .0258921    1.325747
                   |
    cL.x#cL.intra2 |  -.2850499   .2970101    -0.96   0.345    -.8908059    .3207062
                   |
    cL.x#cL.intra3 |   .4430368   .2070881     2.14   0.040     .0206778    .8653958
                   |
    cL.x#cL.inter1 |  -.6084978   .6207346    -0.98   0.335    -1.874494    .6574987
                   |
    cL.x#cL.inter2 |     .36404   .6675775     0.55   0.589    -.9974932    1.725573
                   |
    cL.x#cL.inter3 |  -.0302176   .0802173    -0.38   0.709    -.1938218    .1333866
                   |
             _cons |  -.1158469   .0083171   -13.93   0.000    -.1328097   -.0988842
    --------------------------------------------------------------------------------
    Code:
    HDFE Linear regression                            Number of obs   =     37,172
    Absorbing 2 HDFE groups                           F(  13,     31) =       2.74
    Statistics robust to heteroskedasticity           Prob > F        =     0.0105
                                                      R-squared       =     0.0514
                                                      Adj R-squared   =    -0.0829
                                                      Within R-sq.    =     0.0004
    Number of clusters (sectors) =         32      Root MSE        =     3.8430
    
                                     (Std. Err. adjusted for 32 clusters in sectors)
    -----------------------------------------------------------------------------------
                      |               Robust
                    y |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
    ------------------+----------------------------------------------------------------
                    x |
                  L1. |    .173518   .2929203     0.59   0.558    -.4238969     .770933
                      |
            newintra1 |
                  L1. |   .0240514   .0688895     0.35   0.729    -.1164498    .1645525
                      |
            newintra2 |
                  L1. |  -.0046079   .0469632    -0.10   0.922      -.10039    .0911742
                      |
            newintra3 |
                  L1. |  -.0679491   .0468925    -1.45   0.157     -.163587    .0276888
                      |
            newinter1 |
                  L1. |  -.0541769   .1812328    -0.30   0.767    -.4238035    .3154498
                      |
            newinter2 |
                  L1. |   .0506375   .1695744     0.30   0.767    -.2952118    .3964868
                      |
            newinter3 |
                  L1. |   .0619607    .164531     0.38   0.709    -.2736026    .3975239
                      |
    cL.x#cL.newintra1 |  -.1120985   .2421835    -0.46   0.647     -.606035    .3818379
                      |
    cL.x#cL.newintra2 |  -.6568034   .3075257    -2.14   0.041    -1.284006   -.0296005
                      |
    cL.x#cL.newintra3 |   .9389757   .3915355     2.40   0.023     .1404338    1.737518
                      |
    cL.x#cL.newinter1 |   .3128542   .4878765     0.64   0.526    -.6821763    1.307885
                      |
    cL.x#cL.newinter2 |   .1486688   .3420751     0.43   0.667    -.5489979    .8463354
                      |
    cL.x#cL.newinter3 |  -.6125896   .3287086    -1.86   0.072    -1.282995     .057816
                      |
                _cons |  -.1344938   .0116396   -11.55   0.000    -.1582329   -.1107547
    -----------------------------------------------------------------------------------

  • #2
    See #5 https://www.statalist.org/forums/for...erent-outcomes

    Comment


    • #3
      Dear Andrew Musau , thanks for your answer. Maybe I am too dummy, but I do not see how to adapt that post example, since in that case it is the same indep variable for different dep variables, which is the opposite to my case. When trying to adapt to my variables, I get an error when reshaping. Notice that my dataset is a panel of firms (id) years. Any advice of what am I doing wrong?

      Code:
      reghdfe y  L.c.x##( L.c.intra1 L.c.intra2 L.c.intra3 L.c.inter1 L.c.inter2 L.c.inter3)  if condition==0 & sample==1, absorb(year id, resid) cluster(sectors)
      reghdfe y  L.c.x##( L.c.newintra1 L.c.newintra2 L.c.newintra3 L.c.newinter1 L.c.newinter2 L.c.newinter3) if condition==0 & sample==1, absorb(year id, resid) cluster(sectors)
      *RESTRUCTURE DATA
      rename (intra1 intra2 intra3 inter1 inter2 inter3 newintra1 newintra2 newintra3 newinter1 newinter2 newinter3) var#, addnumber(1)
      reshape long var, i(ident) j(group1)
      lab def group1 1 "intra" 2 "newintra"
      lab values group1 group1
      *GENERATE GROUP INDICATORS
      gen gr1= 1.group1
      gen gr2= 2.group1
      *RUN JOINT REGRESSION WITH ROBUST STD. ERRORS
      *CROSS-SECTIONAL LINEAR MODEL, ROBUST SE = CLUSTER BY OBSERVATION
      gen obs=_n
      reghdfe var c.gr1#(L.c.intra1 L.c.intra2 L.c.intra3 L.c.inter1 L.c.inter2 L.c.inter3) c.gr2#(L.c.newintra1 L.c.newintra2 L.c.newintra3 L.c.newinter1 L.c.newinter2 L.c.newinter3), a(i.ident#c.gr1 i.ident#c.gr2) cluster(obs)
      test c.gr1#c.intra3= c.gr2#c.newintra3
      Code:
      variable id does not uniquely identify the observations
          Your data are currently wide.  You are performing a reshape long.  You specified i(ident) and
          j(group1).  In the current wide form, variable ident should uniquely identify the observations.
          Remember this picture:
      
               long                                wide
              +---------------+                   +------------------+
              | i   j   a   b |                   | i   a1 a2  b1 b2 |
              |---------------| <--- reshape ---> |------------------|
              | 1   1   1   2 |                   | 1   1   3   2  4 |
              | 1   2   3   4 |                   | 2   5   7   6  8 |
              | 2   1   5   6 |                   +------------------+
              | 2   2   7   8 |
              +---------------+
          Type reshape error for a list of the problem observations.

      Comment


      • #4
        Dear Andrew Musau , if instead I do the "suest" option, it is strange what I get (I think). First it tells me that I need to drop the cluster option from the regressions (but these indep variables are at the sectoral-year level while the dep variable is at the firm-year level, so I think I must to cluster the errors at the sectoral level). But on top of that, the coefficients of interest (cL.x#cL.intra3 and cL.x#cL.newintra3) in the separate regressions were both significant when including cluster errors, but non of them in the case of the suest estimation. Maybe I misunderstood how this should work, but why in the separate regressions they are significant but not in the one that I must use to test the equality of coefficients? I think this might be affecting the equality test result.

        Sorry for questioing all this, but I would like to understand what I am doing here.

        Code:
        . reghdfe y  L.c.x##( L.c.intra1 L.c.intra2 L.c.intra3 L.c.inter1 L.c.inter2 L.c.inter3)  if condition==0 
        > & sample==1, absorb(year id, resid) 
        (dropped 22 singleton observations)
        (MWFE estimator converged in 6 iterations)
        
        HDFE Linear regression                            Number of obs   =     37,866
        Absorbing 2 HDFE groups                           F(  13,  33180) =       1.11
                                                          Prob > F        =     0.3440
                                                          R-squared       =     0.0512
                                                          Adj R-squared   =    -0.0828
                                                          Within R-sq.    =     0.0004
                                                          Root MSE        =     3.8264
        
        --------------------------------------------------------------------------------
                     y |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
        ---------------+----------------------------------------------------------------
                     x |
                   L1. |   .1570188   .2523844     0.62   0.534    -.3376637    .6517012
                       |
                intra1 |
                   L1. |    .050553   .1003331     0.50   0.614    -.1461035    .2472095
                       |
                intra2 |
                   L1. |   .0128571   .1110919     0.12   0.908     -.204887    .2306013
                       |
                intra3 |
                   L1. |  -.0411474   .1112903    -0.37   0.712    -.2592803    .1769854
                       |
                inter1 |
                   L1. |   .3016421    .313647     0.96   0.336    -.3131172    .9164013
                       |
                inter2 |
                   L1. |  -.1661863    .177206    -0.94   0.348    -.5135163    .1811437
                       |
                inter3 |
                   L1. |   .0387162   .1159431     0.33   0.738    -.1885364    .2659688
                       |
        cL.x#cL.intra1 |   .6697049   .2896017     2.31   0.021     .1020752    1.237335
                       |
        cL.x#cL.intra2 |  -.3117228   .2789891    -1.12   0.264    -.8585514    .2351058
                       |
        cL.x#cL.intra3 |   .4313363   .2979916     1.45   0.148    -.1527379     1.01541
                       |
        cL.x#cL.inter1 |  -.6273353   .4990678    -1.26   0.209    -1.605526    .3508552
                       |
        cL.x#cL.inter2 |   .4024814   .5082742     0.79   0.428    -.5937541    1.398717
                       |
        cL.x#cL.inter3 |  -.0351048   .1826104    -0.19   0.848    -.3930277    .3228181
                       |
                 _cons |   -.114534   .0258949    -4.42   0.000     -.165289    -.063779
        --------------------------------------------------------------------------------
        
        Absorbed degrees of freedom:
        -----------------------------------------------------+
         Absorbed FE | Categories  - Redundant  = Num. Coefs |
        -------------+---------------------------------------|
                year |        10           0          10     |
                  id |      4664           1        4663     |
        -----------------------------------------------------+
        
        . est store m1
        
        . reghdfe y  L.c.x##( L.c.newintra1 L.c.newintra2 L.c.newintra3 L.c.newinter1 L.c.newinter2 L.c.newinter3)
        >  if condition==0 & sample==1, absorb(year id, resid) 
        (dropped 22 singleton observations)
        (MWFE estimator converged in 6 iterations)
        
        HDFE Linear regression                            Number of obs   =     37,866
        Absorbing 2 HDFE groups                           F(  13,  33180) =       0.94
                                                          Prob > F        =     0.5126
                                                          R-squared       =     0.0511
                                                          Adj R-squared   =    -0.0828
                                                          Within R-sq.    =     0.0004
                                                          Root MSE        =     3.8266
        
        -----------------------------------------------------------------------------------
                        y |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
        ------------------+----------------------------------------------------------------
                        x |
                      L1. |   .2079701    .256363     0.81   0.417    -.2945105    .7104507
                          |
                newintra1 |
                      L1. |   .0252364   .1212799     0.21   0.835    -.2124764    .2629492
                          |
                newintra2 |
                      L1. |  -.0017431   .1160274    -0.02   0.988     -.229161    .2256748
                          |
                newintra3 |
                      L1. |  -.0691971   .0806364    -0.86   0.391    -.2272473    .0888532
                          |
                newinter1 |
                      L1. |   -.053469   .1406033    -0.38   0.704    -.3290565    .2221186
                          |
                newinter2 |
                      L1. |    .045387   .1804244     0.25   0.801    -.3082513    .3990253
                          |
                newinter3 |
                      L1. |   .0579528   .1624729     0.36   0.721    -.2604999    .3764055
                          |
        cL.x#cL.newintra1 |  -.1032029   .3740579    -0.28   0.783    -.8363698    .6299639
                          |
        cL.x#cL.newintra2 |  -.6727925   .3771282    -1.78   0.074    -1.411977    .0663922
                          |
        cL.x#cL.newintra3 |   .9197886   .3923582     2.34   0.019     .1507525    1.688825
                          |
        cL.x#cL.newinter1 |   .3368004   .4501282     0.75   0.454    -.5454669    1.219068
                          |
        cL.x#cL.newinter2 |   .1703454   .4524561     0.38   0.707    -.7164847    1.057175
                          |
        cL.x#cL.newinter3 |  -.6366318   .3563804    -1.79   0.074     -1.33515    .0618864
                          |
                    _cons |  -.1321933    .027769    -4.76   0.000    -.1866215   -.0777651
        -----------------------------------------------------------------------------------
        
        Absorbed degrees of freedom:
        -----------------------------------------------------+
         Absorbed FE | Categories  - Redundant  = Num. Coefs |
        -------------+---------------------------------------|
                year |        10           0          10     |
                  id |      4664           1        4663     |
        -----------------------------------------------------+
        
        . est store m2
        
        . suest m1 m2, cluster(sectors)
        
        Simultaneous results for m1, m2
        
                                                        Number of obs     =     37,866
        
                                            (Std. Err. adjusted for 33 clusters in sectors)
        -----------------------------------------------------------------------------------
                          |               Robust
                          |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
        ------------------+----------------------------------------------------------------
        m1                |
                        x |
                      L1. |   .1570188   3.444031     0.05   0.964    -6.593159    6.907196
                          |
                   intra1 |
                      L1. |    .050553    1.26925     0.04   0.968    -2.437131    2.538237
                          |
                   intra2 |
                      L1. |   .0128571   .9974012     0.01   0.990    -1.942013    1.967728
                          |
                   intra3 |
                      L1. |  -.0411474   .6106366    -0.07   0.946    -1.237973    1.155678
                          |
                   inter1 |
                      L1. |   .3016421   4.275039     0.07   0.944     -8.07728    8.680564
                          |
                   inter2 |
                      L1. |  -.1661863   3.888439    -0.04   0.966    -7.787387    7.455014
                          |
                   inter3 |
                      L1. |   .0387162   .8036303     0.05   0.962     -1.53637    1.613803
                          |
           cL.x#cL.intra1 |   .6697049   5.013178     0.13   0.894    -9.155944    10.49535
                          |
           cL.x#cL.intra2 |  -.3117228   4.098372    -0.08   0.939    -8.344384    7.720938
                          |
           cL.x#cL.intra3 |   .4313363   2.345164     0.18   0.854    -4.165102    5.027774
                          |
           cL.x#cL.inter1 |  -.6273353    7.72036    -0.08   0.935    -15.75896    14.50429
                          |
           cL.x#cL.inter2 |   .4024814   8.733057     0.05   0.963      -16.714    17.51896
                          |
           cL.x#cL.inter3 |  -.0351048   .8009092    -0.04   0.965    -1.604858    1.534648
                          |
                    _cons |   -.114534   .3477773    -0.33   0.742    -.7961649    .5670969
        ------------------+----------------------------------------------------------------
        m2                |
                        x |
                      L1. |   .2079701   4.157552     0.05   0.960    -7.940682    8.356622
                          |
                newintra1 |
                      L1. |   .0252364   1.290026     0.02   0.984    -2.503168    2.553641
                          |
                newintra2 |
                      L1. |  -.0017431   .7183764    -0.00   0.998    -1.409735    1.406249
                          |
                newintra3 |
                      L1. |  -.0691971   .6307774    -0.11   0.913    -1.305498    1.167104
                          |
                newinter1 |
                      L1. |   -.053469   2.853592    -0.02   0.985    -5.646406    5.539468
                          |
                newinter2 |
                      L1. |    .045387   2.929027     0.02   0.988      -5.6954    5.786174
                          |
                newinter3 |
                      L1. |   .0579528   2.729714     0.02   0.983    -5.292189    5.408095
                          |
        cL.x#cL.newintra1 |  -.1032029   3.513214    -0.03   0.977    -6.988976     6.78257
                          |
        cL.x#cL.newintra2 |  -.6727925   4.491507    -0.15   0.881    -9.475984    8.130399
                          |
        cL.x#cL.newintra3 |   .9197886    5.73765     0.16   0.873     -10.3258    12.16538
                          |
        cL.x#cL.newinter1 |   .3368004   6.983847     0.05   0.962    -13.35129    14.02489
                          |
        cL.x#cL.newinter2 |   .1703454   5.034024     0.03   0.973     -9.69616    10.03685
                          |
        cL.x#cL.newinter3 |  -.6366318   4.743804    -0.13   0.893    -9.934318    8.661054
                          |
                    _cons |  -.1321933   .2319529    -0.57   0.569    -.5868125     .322426
        -----------------------------------------------------------------------------------
        
        . 
        . 
        end of do-file
        
        
        . test [m1]cL.x#cL.intra3 = [m2]cL.x#cL.newintra3, accum
        
         ( 1)  [m1]cL.x#cL.intra3 - [m2]cL.x#cL.newintra3 = 0
        
                   chi2(  1) =    0.01
                 Prob > chi2 =    0.9427

        Comment


        • #5
          Doris:
          1) -suest- has its own option for -vce(cluster clusterid) standard errors (SEs);
          2) the difference you got is due to a difference in the way SEs are calculated by the community-contributed module -reghdfe- and -suest-.
          Last edited by Carlo Lazzaro; 08 Apr 2023, 03:03.
          Kind regards,
          Carlo
          (Stata 19.0)

          Comment


          • #6
            Also see

            Code:
            help reghdfe
            where it says

            suest Do not use suest. It will run, but the results will be incorrect.
            ... but I do not see how to adapt that post example, since in that case it is the same indep variable for different dep variables, which is the opposite to my case.
            The easiest way to get help is to provide a reproducible example of your problem.

            Comment


            • #7
              Dear Andrew Musau and Carlo Lazzaro , thanks for your answers. Here you an example of the data. Notice that these are only some of the sectors represented (for the cluster errors), and skip intra3 and inter3 from the previous regression to keep things simple. Now, the two parameters of interest would be intra2 and newintra2.

              Thanks for the help!

              Code:
              reghdfe y  L.c.x##(L.c.intra1 L.c.intra2 L.c.inter1 L.c.inter2) if condition==0 & sample==1, absorb(year id, resid) cluster(sectors)
              Code:
              reghdfe y  L.c.x##(L.c.newintra1 L.c.newintra2 L.c.newinter1 L.c.newinter2) if condition==0 & sample==1, absorb(year id, resid) cluster(sectors)
              Code:
              * Example generated by -dataex-. To install: ssc install dataex
              clear
              input float(y x) int id byte sectors int year float(intra1 intra2 inter1 inter2 newintra1 newintra2 newinter1 newinter2 condition sample)
                 -1.310239    -.04358222  1 38 2010    .7335342    .1614811   .07037489   .16454957    .6452053    .7723771   -.17097393 -.029431446 0 1
                  .6310558      .0207732  1 38 2011    .7204159    .0408118   .12206578   .09978008    .6370733    .5466374   -.11489988 -.074344106 0 1
                  -.574316   -.007321753  1 38 2012    .6835276  -.06389293   .13834992   .05837201    .6215895    .3602834  -.066215016   -.1599788 0 1
                -.10417843    -.03409308  1 38 2013     .661903  -.14986973    .1530191  -.03038616    .6337471   .20169996   -.03050675  -.25296435 0 1
                 1.4741697     .17934754  1 38 2014     .648868   -.2110854    .1830653  -.10326598    .7069225    .0907817   .003880652   -.3175089 0 1
                 -.6232939    -.04746704  1 38 2015    .6406754   -.2940959   .19478127  -.19379637    .7882657  .006409537    .04137224   -.3904191 0 1
                 -9.200512    .004066825  1 38 2016    .5807158   -.3831833   .21094443   -.3115733      .79043  -.08211108    .07578198   -.4558002 0 1
                         0             0  9 20 2006    .8210375   -.8335333   -.4163942  -.29376736    .6583101   -.7581334    -.2713522  -.06255026 0 1
                         0             0  9 20 2007   1.0428481   -.8545354   -.3441913   -.3439389    .9890783   -.7317743    -.2208246  -.09032524 0 1
                  5.330006             0  9 20 2008   1.2114635   -.8541406   -.3002637   -.4310914   1.2769486   -.6698838   -.20430464   -.1602881 0 1
                 .01608038             0  9 20 2009   1.3852746   -.8338434  -.26955214   -.4979208    1.557464   -.5877186   -.18805066   -.1840911 0 1
                 -.1635208             0  9 20 2010   1.4214617   -.8239091   -.2202187   -.5120134   1.6487596   -.5976914   -.09777395  -.16595857 0 1
                         0             0 10 35 2006   -.3344758   2.6209505 -.068622954   1.1794491   -.6052933   2.9178345   -.24877083   .50676954 0 1
                         0             0 10 35 2007  -.22376117    2.512923   .00979589    1.146559   -.5743872    3.204179    -.2109368    .4780441 0 1
                         0             0 10 35 2008  -.10211218    2.332183   .09679188    1.088431  -.51661307   3.6384816    -.1918501    .3348631 0 1
                         0             0 10 35 2009   .08624683    1.941878   .16240837    .9288715   -.4410197    3.230625   -.16635147    .2452438 0 1
                         0             0 10 35 2012    .1660087    1.742554   .22066785    .6235923   -.4540025    2.042027   -.13639627  -.04707728 0 1
                         0             0 10 35 2013    .2179348     1.34981    .2263929    .6606653   -.4835637   1.5976487   -.12192029   -.1613801 0 1
                         0             0 10 35 2014    .3474602    1.235103   .26850644   .58915234   -.5105498   1.2214445   -.04492105  -.25141957 0 1
                         0             0 10 35 2015    .5207694   1.0865159   .26959416    .4519321  -.52171373    .9093297    .02335264    -.323418 0 1
                         0             0 10 35 2016    .6368588     .827598   .27036485   .28325295  -.52057123    .6572259    .05182068   -.3915252 0 1
                         0             0 23 15 2006   -.6299878  -.51146066   -.1593943    .7413161   -.6691451   -.8878852   -.07856676   -.1813704 0 1
                         0             0 23 15 2007   -.6014411   -.5501119   -.0981102    .6048872   -.6579152   -.8750369  -.018386925  -.05444953 0 1
                         0    .004938432 23 15 2008   -.5729851   -.5962655  -.05066995     .373052   -.6402245   -.8550715  .0014505122  -.13636892 0 1
                         0    .003597167 23 15 2009   -.5563743   -.6369237 -.006185102   .16534223   -.6298152   -.8388839    .02324785   -.2043318 0 1
                         0   -.008535598 23 15 2010   -.5334814   -.6086057  .010191674   .02940664   -.6121637   -.7974497    .06619407   -.2232624 0 1
                         0             0 23 15 2011    -.522971   -.6385321   .04947682   .20404613   -.6069376    -.754374    .12557524    .2788913 0 1
                         0             0 23 15 2012   -.5100355   -.6720961   .04658636   .09194387   -.5871379   -.7494183    .14621523   .11899638 0 1
                 -.1522522   .0030287225 26 18 2006  -.22119194    .2182813    .3398562    .7335734   -.3740687    .4090539     .5385968    .9272752 0 1
                 -.1992855    .010946872 26 18 2007    -.184003   .11139861      .46652     .613701   -.3626274   .31379485     .6421301      .87358 0 1
                 .05313015   -.008561492 26 18 2008   -.1641445  .026334645   .54979223    .4284563   -.3553174   .22193155     .6775621      .71356 0 1
                 -.3865557     .00299667 26 18 2009  -.10864024  -.05653598     .600492    .3175632   -.3393796      .08887     .7179909    .6960016 0 1
                 -.6249323  -.0017880797 26 18 2010  -.09659414  -.11868455    .6925154    .3026466   -.3147526    .0569896     .8935719    .7554783 0 1
                  .3176594     .02309232 26 18 2011  -.08157914  -.21803303    .8140777    .3212237  -.29199573  -.04451777    1.0378708    .8961616 0 1
                  .3208666    -.03028217 26 18 2012   -.0567903    -.242051    .8796297    .1868068    -.265088  .024126196    1.1941798    .6867321 0 1
                  .4156313     .00618347 26 18 2013  -.04370517  -.31458715    .9185467   .03241601   -.2214123  -.08807979    1.3021843    .5005748 0 1
                 .25620174    .002424359 26 18 2014 -.033906706   -.3495028    .9449667   -.0374389   -.1843347 -.069355674    1.3794158    .4716379 0 1
                 .16717052    .014669914 26 18 2015 -.029668346   -.3967149    .9417148  -.17509994  -.14731087  -.13184361     1.404514    .3087605 0 1
                 .15133476   -.003409974 26 18 2016  -.04324604     -.47006    .9344091  -.28613073   -.1579667   -.2136312    1.4204942   .17689686 0 1
                         0             0 28  3 2010  -.25485873   2.0288453   -.6518729   -.6571813  -.27546376    .2270423    -.5917163  -.44704285 0 1
                         0             0 28  3 2011     -.24559   1.6222415   -.6344361   -.7174726  -.26235282   .10952318   -.57066697   -.5025138 0 1
                         0             0 28  3 2012  -.25184685     1.31267   -.6276366   -.7622755   -.2568892  .003526869   -.55436623   -.5530581 0 1
                         0             0 28  3 2013  -.24220595   1.0312085   -.6219793   -.8272409   -.2441468  -.08472925    -.5392359   -.6007122 0 1
                         0             0 28  3 2014  -.25583696    .7577707   -.6113721   -.8712014  -.23126753  -.12848419   -.52283627   -.6407307 0 1
                         0             0 28  3 2015  -.27144343   .55816364   -.6012665   -.9006326  -.21857943  -.08946204    -.5034439   -.6810899 0 1
                         0             0 28  3 2016  -.27510625   .39344215  -.59485173   -.9532337  -.18836457   -.1167445    -.4919034   -.7207676 0 1
                  11.97532   .0007132883 31 18 2006  -.22119194    .2182813    .3398562    .7335734   -.3740687    .4090539     .5385968    .9272752 0 1
                -1.5836735    .013510846 31 18 2007    -.184003   .11139861      .46652     .613701   -.3626274   .31379485     .6421301      .87358 0 1
                 1.2689657   -.005916769 31 18 2008   -.1641445  .026334645   .54979223    .4284563   -.3553174   .22193155     .6775621      .71356 0 1
                 -3.098756    .005442893 31 18 2009  -.10864024  -.05653598     .600492    .3175632   -.3393796      .08887     .7179909    .6960016 0 1
                 -8.561855     .02122136 31 18 2010  -.09659414  -.11868455    .6925154    .3026466   -.3147526    .0569896     .8935719    .7554783 0 1
                  6.866157     .02879029 31 18 2011  -.08157914  -.21803303    .8140777    .3212237  -.29199573  -.04451777    1.0378708    .8961616 0 1
                  2.429369  -.0011951402 31 18 2012   -.0567903    -.242051    .8796297    .1868068    -.265088  .024126196    1.1941798    .6867321 0 1
                 -1.989827   -.007779721 31 18 2013  -.04370517  -.31458715    .9185467   .03241601   -.2214123  -.08807979    1.3021843    .5005748 0 1
                 .22089624    -.01868459 31 18 2014 -.033906706   -.3495028    .9449667   -.0374389   -.1843347 -.069355674    1.3794158    .4716379 0 1
                 .11128235  -.0043012574 32 23 2006   -.7643771   -.5162818   -.3291505     .414096   -.6431451    -.846158   -.34982875    .3053266 0 1
                 .01090145    .002477847 32 23 2007   -.7505687   -.5773636   -.2623397   .29384926   -.6261643   -.8379131    -.3002596    .2410758 0 1
                  .7078409    -.03855815 32 23 2008   -.7357259   -.6417707  -.19868354    .1524944   -.6137356   -.8351584   -.25750095   .14139338 0 1
                 -2.816991     .04575902 32 23 2009   -.7249346   -.6994354  -.14291452   .01933689   -.6001021   -.8444477   -.20808633   .07209162 0 1
                  2.422898   -.035074152 32 23 2010   -.7177013   -.7373554  -.10847956  -.06150593  -.59098035   -.8491185   -.16045187   .02337081 0 1
                -4.0583024     .04133575 32 23 2011   -.7151187   -.7803815  -.07803272  -.10130744   -.5888594   -.8440191   -.11831725   .07349116 0 1
                 2.8342624   -.015723087 32 23 2012   -.7148868   -.8136601  -.06605188  -.19248393  -.58193624   -.8400126    -.0852288 -.035171006 0 1
                -10.712678  -.0021221973 32 23 2013   -.7161653   -.8376102  -.06053599    -.315908   -.5796056   -.8379619   -.05987298  -.13837668 0 1
                         0   -.003282819 32 23 2014   -.7216688   -.8597494  -.05146606   -.4032112   -.5730453   -.8440244  -.031292744   -.2132469 0 1
                         0   .0003324337 32 23 2015    -.725682   -.8736054  -.04338742   -.4719104  -.56448233   -.8173651 -.0018199604  -.28537348 0 1
                         0     .04363326 32 23 2016    -.727131   -.8952292 -.032497507   -.5562292   -.5540532   -.8142039    .02149565   -.3521277 0 1
                         0     .09136026 33 14 2006   -.5590297   -.3699251  -1.0490344   -.9365398    -.410712   -.8343054     -.881998   -.7782007 0 1
                         0     .04322057 33 14 2007   -.5518271   -.4130601  -1.0195234   -.9792255   -.3914775   -.6668702    -.8642039   -.7972012 0 1
                         0    -.08305772 33 14 2008  -.54594713  -.50139356   -.9950192  -1.0277141   -.3910828   -.6846053    -.8483211   -.8237093 0 1
                         0    -.05152311 33 14 2009   -.5414557    -.579475   -.9730968  -1.0731288   -.3921263   -.7018773    -.8310958   -.8471273 0 1
                         0             0 33 14 2010  -.54796946   -.6313283   -.9560827  -1.0946468   -.3878219   -.6927995    -.8109732   -.8599495 0 1
                         0             0 33 14 2011   -.5416088  -.51882577   -.9435067   -1.130483  -.36778975   -.1864549    -.8019171   -.8838214 0 1
                         0             0 33 14 2012   -.5540586   -.5594485   -.9375467  -1.1562508   -.3718024  -.29443458    -.7952192   -.8969989 0 1
                         0             0 33 14 2013   -.5590308    -.612335   -.9317656   -1.193785   -.3693162   -.3800702    -.7846462   -.9226372 0 1
                         0             0 33 14 2014   -.5668753   -.6666742   -.9255474  -1.2132792   -.3669605   -.4305714    -.7789773   -.9285353 0 1
                         0             0 33 14 2015  -.58394194   -.7179068   -.9175639  -1.2231835   -.3795335   -.4840098    -.7688804    -.939143 0 1
                         0     .09747665 33 14 2016   -.5928264   -.7571037   -.9124928  -1.2453197   -.3831898   -.5288012    -.7651632   -.9560628 0 1
                 .09964561     .04390549 36 18 2006  -.22119194    .2182813    .3398562    .7335734   -.3740687    .4090539     .5385968    .9272752 0 1
                 -.3892307    .014672443 36 18 2007    -.184003   .11139861      .46652     .613701   -.3626274   .31379485     .6421301      .87358 0 1
                 -.0502615    -.04659684 36 18 2008   -.1641445  .026334645   .54979223    .4284563   -.3553174   .22193155     .6775621      .71356 0 1
                .015656471   .0017848648 36 18 2009  -.10864024  -.05653598     .600492    .3175632   -.3393796      .08887     .7179909    .6960016 0 1
                  .4230738     .04094453 36 18 2010  -.09659414  -.11868455    .6925154    .3026466   -.3147526    .0569896     .8935719    .7554783 0 1
                  .6289749   -.017166141 36 18 2011  -.08157914  -.21803303    .8140777    .3212237  -.29199573  -.04451777    1.0378708    .8961616 0 1
                -11.462083   -.012850057 36 18 2012   -.0567903    -.242051    .8796297    .1868068    -.265088  .024126196    1.1941798    .6867321 0 1
                 10.208496     .04528238 36 18 2013  -.04370517  -.31458715    .9185467   .03241601   -.2214123  -.08807979    1.3021843    .5005748 0 1
               -.002993584    -.03882381 36 18 2014 -.033906706   -.3495028    .9449667   -.0374389   -.1843347 -.069355674    1.3794158    .4716379 0 1
                .034711838     .02281242 36 18 2015 -.029668346   -.3967149    .9417148  -.17509994  -.14731087  -.13184361     1.404514    .3087605 0 1
                -10.240214    -.01925854 36 18 2016  -.04324604     -.47006    .9344091  -.28613073   -.1579667   -.2136312    1.4204942   .17689686 0 1
                 .25034428             0 37  3 2010  -.25485873   2.0288453   -.6518729   -.6571813  -.27546376    .2270423    -.5917163  -.44704285 0 1
                 -9.277662             0 37  3 2011     -.24559   1.6222415   -.6344361   -.7174726  -.26235282   .10952318   -.57066697   -.5025138 0 1
                         0             0 37  3 2012  -.25184685     1.31267   -.6276366   -.7622755   -.2568892  .003526869   -.55436623   -.5530581 0 1
                         0             0 37  3 2013  -.24220595   1.0312085   -.6219793   -.8272409   -.2441468  -.08472925    -.5392359   -.6007122 0 1
                         0             0 40 10 2006  -.32378945   -.4621172  -1.1257854   -.9861168  -.14845937   -.6312383    -.9540728   -.7420297 0 1
                         0    .026150554 40 10 2007  -.26540643    -.498183  -1.1058149    -1.01455   -.0988713  -.58238053    -.9372557   -.7488079 0 1
                  11.09338     .12496987 40 10 2008  -.21996392   -.5561441  -1.0846677  -1.0452298  -.05620141   -.5955785    -.9227296   -.7596315 0 1
                 1.9853888    -.09988955 40 10 2009   -.1883081   -.6029475  -1.0654018  -1.0875415 -.011605667   -.5802824    -.9067446   -.7824084 0 1
                -2.1769047      .0828963 40 10 2010   -.1557836   -.6331809   -1.053043   -1.114553  .030737676   -.5872167    -.8934116   -.8053197 0 1
                 .04075527    -.13412717 40 10 2011   -.1363123   -.6701091  -1.0430834  -1.1458058   .04062562   -.6088923    -.8776091   -.8250563 0 1
                -.07221508             0 40 10 2012  -.13770063   -.6985171  -1.0361662  -1.1737823  .029101064   -.6060436     -.861595   -.8553593 0 1
                 .05438709     .13667665 40 10 2013  -.13514529   -.7216277  -1.0321916  -1.2096547  .026721714     -.59754    -.8483665   -.8867478 0 1
                -4.6367006     -.1288886 40 10 2014  -.13068345   -.7290182  -1.0270319  -1.2378004   .00904037   -.5600482    -.8342248   -.9121373 0 1
                 -6.288092    .006291248 40 10 2015  -.10982981   -.7260799  -1.0255381  -1.2589794   .01926133  -.53782463     -.823168   -.9331345 0 1
                 10.161176  -.0001738891 40 10 2016  -.09765138    -.741742  -1.0240958  -1.2837437  .023847254   -.5465247    -.8136249   -.9520458 0 1
                  .9399757     .02299291 43 19 2006   1.3675498  -.21901283   -.8247516   -.4539051   1.7944455   1.2061343    -.7532216  -.25796574 0 1
              -.0012102127     -.0572724 43 19 2007   1.5640676  -.19486187   -.7907363   -.5262454     1.98017   1.3400645    -.7284812   -.3151047 0 1
                 -11.61211     .10597903 43 19 2008   1.6478975  -.21484283   -.7618105   -.6144678    1.999793   1.3082663    -.7061789   -.3860319 0 1
                         0   -.018910006 43 19 2009   1.6634414  -.13248321   -.7321151   -.6907768   2.0014472     1.60028     -.679543   -.4346979 0 1
                         0     .13425578 43 19 2010   1.8672647   .02617999   -.7175632   -.7334712    2.418605   2.1007862    -.6569471   -.4695939 0 1
                         0     .10598907 43 19 2011   2.1394713  -.02194485   -.7065763   -.7601909   2.7223766   1.9312136    -.6358413   -.4442975 0 1
                         0    -.13831043 43 19 2012   2.3140557  -.06688177   -.6996293   -.8092644     3.09724    1.765376    -.6186515   -.5046915 0 1
                         0     -.0448128 43 19 2013   2.4380846  -.12588945   -.6988693   -.8759033    3.382655   1.5973245    -.6047218   -.5713429 0 1
                         0     -.2064156 43 19 2014     2.51447 -.024938833   -.6968169     -.92763    3.559386   1.9531143   -.58652276    -.617911 0 1
                         0    .036450457 43 19 2015   2.5194426  -.13144583   -.6951051   -.9733247    3.613109    1.670537   -.56953114   -.6614799 0 1
                         0    -.07146596 43 19 2016    2.476447  -.19952947   -.6918949  -1.0217642    3.606691    1.455017    -.5571647   -.7020125 0 1
                         0             0 45 18 2006  -.22119194    .2182813    .3398562    .7335734   -.3740687    .4090539     .5385968    .9272752 0 1
                         0             0 45 18 2007    -.184003   .11139861      .46652     .613701   -.3626274   .31379485     .6421301      .87358 0 1
                         0             0 45 18 2008   -.1641445  .026334645   .54979223    .4284563   -.3553174   .22193155     .6775621      .71356 0 1
                         0             0 45 18 2009  -.10864024  -.05653598     .600492    .3175632   -.3393796      .08887     .7179909    .6960016 0 1
                         0             0 45 18 2010  -.09659414  -.11868455    .6925154    .3026466   -.3147526    .0569896     .8935719    .7554783 0 1
                         0             0 45 18 2011  -.08157914  -.21803303    .8140777    .3212237  -.29199573  -.04451777    1.0378708    .8961616 0 1
                         0     .08168495 45 18 2012   -.0567903    -.242051    .8796297    .1868068    -.265088  .024126196    1.1941798    .6867321 0 1
                         0     .02193831 45 18 2013  -.04370517  -.31458715    .9185467   .03241601   -.2214123  -.08807979    1.3021843    .5005748 0 1
                         0   -.011971377 45 18 2014 -.033906706   -.3495028    .9449667   -.0374389   -.1843347 -.069355674    1.3794158    .4716379 0 1
                         0    -.05902888 45 18 2015 -.029668346   -.3967149    .9417148  -.17509994  -.14731087  -.13184361     1.404514    .3087605 0 1
                  9.725683     .05585254 45 18 2016  -.04324604     -.47006    .9344091  -.28613073   -.1579667   -.2136312    1.4204942   .17689686 0 1
                 -3.987398      .0296032 48 15 2006   -.6299878  -.51146066   -.1593943    .7413161   -.6691451   -.8878852   -.07856676   -.1813704 0 1
                  6.173608  -.0018759668 48 15 2007   -.6014411   -.5501119   -.0981102    .6048872   -.6579152   -.8750369  -.018386925  -.05444953 0 1
                .023412704     .07580752 48 15 2008   -.5729851   -.5962655  -.05066995     .373052   -.6402245   -.8550715  .0014505122  -.13636892 0 1
                -.05007553    -.12723356 48 15 2009   -.5563743   -.6369237 -.006185102   .16534223   -.6298152   -.8388839    .02324785   -.2043318 0 1
                 .11684608    .032417778 48 15 2010   -.5334814   -.6086057  .010191674   .02940664   -.6121637   -.7974497    .06619407   -.2232624 0 1
                -11.605373     .08021335 48 15 2011    -.522971   -.6385321   .04947682   .20404613   -.6069376    -.754374    .12557524    .2788913 0 1
                         0    -.06553223 48 15 2012   -.5100355   -.6720961   .04658636   .09194387   -.5871379   -.7494183    .14621523   .11899638 0 1
                  11.54398     .02190085 48 15 2013  -.49357685   -.7160076   .04937047 -.065694064  -.55426764   -.7627468     .1727835   -.0333434 0 1
                 .06819248    .008237213 48 15 2014   -.4820767   -.7516899   .04669877  -.19589216   -.5246958   -.7777919    .19064045   -.1064962 0 1
                 -2.264079     .07578475 48 15 2015   -.4803617   -.7535134  .027656937   -.3278083   -.5105906   -.7409879    .18614864   -.2073948 0 1
                 -9.348092     -.1820626 48 15 2016  -.46765605   -.7446832  .015366635   -.4510279   -.4917175   -.7271292    .18432403   -.2985099 0 1
                         0     .17422608 49  7 2006   -.9194757  -1.0634611   -.6245188 -.016486235   -.6909162   -.9118056    -.6426716  -.05928919 0 1
                         0    -.12981004 49  7 2007    -.920938  -1.0643167  -.57187057   -.1139896   -.6950354   -.9135984    -.6138641   -.1309857 0 1
                         0   -.012669206 49  7 2008   -.9222463  -1.0637548  -.52801895  -.21180224   -.6978999    -.914431   -.58743864   -.2032117 0 1
                         0   -.031746827 49  7 2009   -.9227372  -1.0639884   -.4799001   -.3207718   -.6999536   -.9158299    -.5574482    -.284984 0 1
                         0     .10017829 49  7 2010   -.9224407  -1.0639989   -.4557777   -.3969462   -.7016716   -.9170189    -.5245073   -.3327265 0 1
                         0    -.05165176 49  7 2011   -.9233372  -1.0611547   -.4376563   -.4878311   -.7030061   -.9134737   -.50090235   -.3931218 0 1
                         0  -.0044292547 49  7 2012   -.9259148  -1.0622456  -.42630175   -.5368409   -.7055444   -.9143279    -.4811617   -.4195299 0 1
                         0   -.012398176 49  7 2013   -.9269812  -1.0637208   -.4189372    -.618886    -.707822   -.9157423    -.4554866   -.4789502 0 1
                         0    .063060306 49  7 2014    -.928924  -1.0648206    -.410058   -.6672173   -.7089696   -.9169445    -.4319057  -.50434834 0 1
                         0    -.07377233 49  7 2015   -.9315764  -1.0612959   -.4004657   -.7080018   -.7105548   -.9179664    -.4036454  -.55140924 0 1
                         0    .004854724 49  7 2016   -.9319947  -1.0629137  -.39878145   -.7809715   -.7111087    -.918835     -.397877   -.6020528 0 1
                 11.524402   -.013370142 57 17 2006  -.16296527    .6910729   -.3045582  .005612827   -.1808903   1.8531897    -.2738446   -.4046522 0 1
                  .5906315    .003993168 57 17 2007  -.12760158   .49101025  -.22800286  -.04075513  -.13092873   1.5345836   -.21740285  -.34125745 0 1
                -.06821251  -.0025590695 57 17 2008  -.08776941    .3052638   -.1803723  -.16230844  -.06853416   1.2620605    -.1950672   -.3785194 0 1
                -.14050388  .00006390747 57 17 2009  -.04114436     .219573  -.14734696  -.28471035   .03233876   1.2815285   -.17635834   -.4039998 0 1
                  1.208785    .000520793 57 17 2010  -.03068115   .14808367  -.11283325   -.3432506   .07698809    1.312347   -.11264782   -.3949724 0 1
                -.18023396  -.0011656716 57 17 2011 -.013190757   .07717608  -.07105823  -.29507726   .13015945   1.3152156   -.05299809   -.1800295 0 1
                -1.5934553     .02740956 57 17 2012 .0042479215    -.070185  -.06048972   -.3672306   .18293183   1.0365621  -.006900111  -.26059642 0 1
                 1.2439432   -.018479317 57 17 2013 -.031245977  -.20052497  -.04833134  -.46385005   .15438074    .7951767    .04288261   -.3381898 0 1
               -.024873734   -.007726917 57 17 2014  -.04983155   -.3074035  -.04137612   -.5252746    .1529525    .5999494    .08226909   -.3512666 0 1
                  .1773052 -.00027857616 57 17 2015   -.0478274  -.40346345  -.04957296   -.6064127    .1638868    .3986681     .0978829   -.4125164 0 1
                 .13076305 -.00007392839 57 17 2016  -.03238987   -.4827064  -.05711084   -.6811523   .19511434   .25336653    .10680893  -.46523115 0 1
                         0  -.0013496242 58 16 2006   -.3022504   -.4913982    -.720108  -.03593453   -.5597193   -.7641965    -.6259589    .3723705 0 1
                         0    .006659966 58 16 2007   -.2395132   -.4321118   -.6774417  -.15755105   -.5302695   -.7508265    -.5878164   .23465517 0 1
                         0    .014227089 58 16 2008  -.22326463    -.440414   -.6358768  -.28542194    -.509041   -.7282331    -.5511041    .0918867 0 1
                         0   -.015884116 58 16 2009  -.21753153   -.4913557   -.5940421   -.3728692   -.4913181   -.7234161    -.4989752  .029678315 0 1
                 11.298646   .0011328235 58 16 2010  -.21532053  -.52679497  -.57488585   -.4301473   -.4792644   -.7000387    -.4642216  -.01409165 0 1
                -11.298646    .001373157 58 16 2011  -.22054853  -.55531734   -.5525793   -.4654091   -.4546941   -.6569347    -.4288518  -.01091895 0 1
                         0    .008064672 58 16 2012  -.23846403  -.59261084    -.539386   -.5474964   -.4384836   -.6404495    -.3987256  -.13989535 0 1
                         0    .005538076 58 16 2013  -.25485054   -.6183102   -.5446971   -.6288981   -.4180189   -.6246612    -.3969437  -.26041684 0 1
                         0    .009951472 58 16 2014  -.26396236   -.6311159   -.5430793   -.7035896   -.3838884  -.58899415    -.3855624   -.3492266 0 1
                         0     -.0466197 58 16 2015  -.27708802   -.6667495  -.53980047   -.7786865    -.362593     -.61238    -.3717429   -.4374855 0 1
                  7.426246     .00992981 58 16 2016   -.2881736   -.6913921   -.5311611   -.8527237   -.3452259   -.6049893    -.3537157  -.51185495 0 1
                         0             0 60 18 2006  -.22119194    .2182813    .3398562    .7335734   -.3740687    .4090539     .5385968    .9272752 0 1
                         0             0 60 18 2007    -.184003   .11139861      .46652     .613701   -.3626274   .31379485     .6421301      .87358 0 1
                         0             0 60 18 2008   -.1641445  .026334645   .54979223    .4284563   -.3553174   .22193155     .6775621      .71356 0 1
                         0             0 60 18 2009  -.10864024  -.05653598     .600492    .3175632   -.3393796      .08887     .7179909    .6960016 0 1
                  8.142585     .25826448 60 18 2010  -.09659414  -.11868455    .6925154    .3026466   -.3147526    .0569896     .8935719    .7554783 0 1
                -.10019493    -.25631073 60 18 2011  -.08157914  -.21803303    .8140777    .3212237  -.29199573  -.04451777    1.0378708    .8961616 0 1
                  -8.04239   .0024555265 60 18 2012   -.0567903    -.242051    .8796297    .1868068    -.265088  .024126196    1.1941798    .6867321 0 1
                         0   -.004409286 60 18 2013  -.04370517  -.31458715    .9185467   .03241601   -.2214123  -.08807979    1.3021843    .5005748 0 1
                  7.584398             0 60 18 2014 -.033906706   -.3495028    .9449667   -.0374389   -.1843347 -.069355674    1.3794158    .4716379 0 1
                 -.3128023      .2130519 60 18 2015 -.029668346   -.3967149    .9417148  -.17509994  -.14731087  -.13184361     1.404514    .3087605 0 1
                 .22450542     .04965213 60 18 2016  -.04324604     -.47006    .9344091  -.28613073   -.1579667   -.2136312    1.4204942   .17689686 0 1
                         0     -.1838541 62 16 2006   -.3022504   -.4913982    -.720108  -.03593453   -.5597193   -.7641965    -.6259589    .3723705 0 1
                         0      .1624922 62 16 2007   -.2395132   -.4321118   -.6774417  -.15755105   -.5302695   -.7508265    -.5878164   .23465517 0 1
                         0      .0589261 62 16 2008  -.22326463    -.440414   -.6358768  -.28542194    -.509041   -.7282331    -.5511041    .0918867 0 1
                         0    -.07474253 62 16 2009  -.21753153   -.4913557   -.5940421   -.3728692   -.4913181   -.7234161    -.4989752  .029678315 0 1
                         0    -.04955459 62 16 2010  -.21532053  -.52679497  -.57488585   -.4301473   -.4792644   -.7000387    -.4642216  -.01409165 0 1
                         0    -.05996171 62 16 2011  -.22054853  -.55531734   -.5525793   -.4654091   -.4546941   -.6569347    -.4288518  -.01091895 0 1
                         0      .3514006 62 16 2012  -.23846403  -.59261084    -.539386   -.5474964   -.4384836   -.6404495    -.3987256  -.13989535 0 1
                         0   -.026771903 62 16 2013  -.25485054   -.6183102   -.5446971   -.6288981   -.4180189   -.6246612    -.3969437  -.26041684 0 1
                         0     .02248806 62 16 2014  -.26396236   -.6311159   -.5430793   -.7035896   -.3838884  -.58899415    -.3855624   -.3492266 0 1
                         0    .004653573 62 16 2015  -.27708802   -.6667495  -.53980047   -.7786865    -.362593     -.61238    -.3717429   -.4374855 0 1
                         0     -.3522437 62 16 2016   -.2881736   -.6913921   -.5311611   -.8527237   -.3452259   -.6049893    -.3537157  -.51185495 0 1
                         0  -.0013919142 63 15 2006   -.6299878  -.51146066   -.1593943    .7413161   -.6691451   -.8878852   -.07856676   -.1813704 0 1
                         0    .006406098 63 15 2007   -.6014411   -.5501119   -.0981102    .6048872   -.6579152   -.8750369  -.018386925  -.05444953 0 1
                         0   .0003771782 63 15 2008   -.5729851   -.5962655  -.05066995     .373052   -.6402245   -.8550715  .0014505122  -.13636892 0 1
                         0    -.00655064 63 15 2009   -.5563743   -.6369237 -.006185102   .16534223   -.6298152   -.8388839    .02324785   -.2043318 0 1
                         0   -.003422987 63 15 2010   -.5334814   -.6086057  .010191674   .02940664   -.6121637   -.7974497    .06619407   -.2232624 0 1
                         0             0 63 15 2011    -.522971   -.6385321   .04947682   .20404613   -.6069376    -.754374    .12557524    .2788913 0 1
                         0             0 63 15 2012   -.5100355   -.6720961   .04658636   .09194387   -.5871379   -.7494183    .14621523   .11899638 0 1
                         0             0 63 15 2013  -.49357685   -.7160076   .04937047 -.065694064  -.55426764   -.7627468     .1727835   -.0333434 0 1
                         0             0 63 15 2014   -.4820767   -.7516899   .04669877  -.19589216   -.5246958   -.7777919    .19064045   -.1064962 0 1
              end

              Comment


              • #8
                Thanks for the data example. As the panel identifier is "id", you should cluster at this level. In your example, you do not have nearly enough sectors to cluster at the sectoral level, so there will be large bias if you do so. With the initial interactions that you have, you should create the interacted variables manually - otherwise it will be a mess with three-way interactions relying on factor variables.

                Code:
                * Example generated by -dataex-. To install: ssc install dataex
                clear
                input float(y x) int id byte sectors int year float(intra1 intra2 inter1 inter2 newintra1 newintra2 newinter1 newinter2 condition sample)
                   -1.310239    -.04358222  1 38 2010    .7335342    .1614811   .07037489   .16454957    .6452053    .7723771   -.17097393 -.029431446 0 1
                    .6310558      .0207732  1 38 2011    .7204159    .0408118   .12206578   .09978008    .6370733    .5466374   -.11489988 -.074344106 0 1
                    -.574316   -.007321753  1 38 2012    .6835276  -.06389293   .13834992   .05837201    .6215895    .3602834  -.066215016   -.1599788 0 1
                  -.10417843    -.03409308  1 38 2013     .661903  -.14986973    .1530191  -.03038616    .6337471   .20169996   -.03050675  -.25296435 0 1
                   1.4741697     .17934754  1 38 2014     .648868   -.2110854    .1830653  -.10326598    .7069225    .0907817   .003880652   -.3175089 0 1
                   -.6232939    -.04746704  1 38 2015    .6406754   -.2940959   .19478127  -.19379637    .7882657  .006409537    .04137224   -.3904191 0 1
                   -9.200512    .004066825  1 38 2016    .5807158   -.3831833   .21094443   -.3115733      .79043  -.08211108    .07578198   -.4558002 0 1
                           0             0  9 20 2006    .8210375   -.8335333   -.4163942  -.29376736    .6583101   -.7581334    -.2713522  -.06255026 0 1
                           0             0  9 20 2007   1.0428481   -.8545354   -.3441913   -.3439389    .9890783   -.7317743    -.2208246  -.09032524 0 1
                    5.330006             0  9 20 2008   1.2114635   -.8541406   -.3002637   -.4310914   1.2769486   -.6698838   -.20430464   -.1602881 0 1
                   .01608038             0  9 20 2009   1.3852746   -.8338434  -.26955214   -.4979208    1.557464   -.5877186   -.18805066   -.1840911 0 1
                   -.1635208             0  9 20 2010   1.4214617   -.8239091   -.2202187   -.5120134   1.6487596   -.5976914   -.09777395  -.16595857 0 1
                           0             0 10 35 2006   -.3344758   2.6209505 -.068622954   1.1794491   -.6052933   2.9178345   -.24877083   .50676954 0 1
                           0             0 10 35 2007  -.22376117    2.512923   .00979589    1.146559   -.5743872    3.204179    -.2109368    .4780441 0 1
                           0             0 10 35 2008  -.10211218    2.332183   .09679188    1.088431  -.51661307   3.6384816    -.1918501    .3348631 0 1
                           0             0 10 35 2009   .08624683    1.941878   .16240837    .9288715   -.4410197    3.230625   -.16635147    .2452438 0 1
                           0             0 10 35 2012    .1660087    1.742554   .22066785    .6235923   -.4540025    2.042027   -.13639627  -.04707728 0 1
                           0             0 10 35 2013    .2179348     1.34981    .2263929    .6606653   -.4835637   1.5976487   -.12192029   -.1613801 0 1
                           0             0 10 35 2014    .3474602    1.235103   .26850644   .58915234   -.5105498   1.2214445   -.04492105  -.25141957 0 1
                           0             0 10 35 2015    .5207694   1.0865159   .26959416    .4519321  -.52171373    .9093297    .02335264    -.323418 0 1
                           0             0 10 35 2016    .6368588     .827598   .27036485   .28325295  -.52057123    .6572259    .05182068   -.3915252 0 1
                           0             0 23 15 2006   -.6299878  -.51146066   -.1593943    .7413161   -.6691451   -.8878852   -.07856676   -.1813704 0 1
                           0             0 23 15 2007   -.6014411   -.5501119   -.0981102    .6048872   -.6579152   -.8750369  -.018386925  -.05444953 0 1
                           0    .004938432 23 15 2008   -.5729851   -.5962655  -.05066995     .373052   -.6402245   -.8550715  .0014505122  -.13636892 0 1
                           0    .003597167 23 15 2009   -.5563743   -.6369237 -.006185102   .16534223   -.6298152   -.8388839    .02324785   -.2043318 0 1
                           0   -.008535598 23 15 2010   -.5334814   -.6086057  .010191674   .02940664   -.6121637   -.7974497    .06619407   -.2232624 0 1
                           0             0 23 15 2011    -.522971   -.6385321   .04947682   .20404613   -.6069376    -.754374    .12557524    .2788913 0 1
                           0             0 23 15 2012   -.5100355   -.6720961   .04658636   .09194387   -.5871379   -.7494183    .14621523   .11899638 0 1
                   -.1522522   .0030287225 26 18 2006  -.22119194    .2182813    .3398562    .7335734   -.3740687    .4090539     .5385968    .9272752 0 1
                   -.1992855    .010946872 26 18 2007    -.184003   .11139861      .46652     .613701   -.3626274   .31379485     .6421301      .87358 0 1
                   .05313015   -.008561492 26 18 2008   -.1641445  .026334645   .54979223    .4284563   -.3553174   .22193155     .6775621      .71356 0 1
                   -.3865557     .00299667 26 18 2009  -.10864024  -.05653598     .600492    .3175632   -.3393796      .08887     .7179909    .6960016 0 1
                   -.6249323  -.0017880797 26 18 2010  -.09659414  -.11868455    .6925154    .3026466   -.3147526    .0569896     .8935719    .7554783 0 1
                    .3176594     .02309232 26 18 2011  -.08157914  -.21803303    .8140777    .3212237  -.29199573  -.04451777    1.0378708    .8961616 0 1
                    .3208666    -.03028217 26 18 2012   -.0567903    -.242051    .8796297    .1868068    -.265088  .024126196    1.1941798    .6867321 0 1
                    .4156313     .00618347 26 18 2013  -.04370517  -.31458715    .9185467   .03241601   -.2214123  -.08807979    1.3021843    .5005748 0 1
                   .25620174    .002424359 26 18 2014 -.033906706   -.3495028    .9449667   -.0374389   -.1843347 -.069355674    1.3794158    .4716379 0 1
                   .16717052    .014669914 26 18 2015 -.029668346   -.3967149    .9417148  -.17509994  -.14731087  -.13184361     1.404514    .3087605 0 1
                   .15133476   -.003409974 26 18 2016  -.04324604     -.47006    .9344091  -.28613073   -.1579667   -.2136312    1.4204942   .17689686 0 1
                           0             0 28  3 2010  -.25485873   2.0288453   -.6518729   -.6571813  -.27546376    .2270423    -.5917163  -.44704285 0 1
                           0             0 28  3 2011     -.24559   1.6222415   -.6344361   -.7174726  -.26235282   .10952318   -.57066697   -.5025138 0 1
                           0             0 28  3 2012  -.25184685     1.31267   -.6276366   -.7622755   -.2568892  .003526869   -.55436623   -.5530581 0 1
                           0             0 28  3 2013  -.24220595   1.0312085   -.6219793   -.8272409   -.2441468  -.08472925    -.5392359   -.6007122 0 1
                           0             0 28  3 2014  -.25583696    .7577707   -.6113721   -.8712014  -.23126753  -.12848419   -.52283627   -.6407307 0 1
                           0             0 28  3 2015  -.27144343   .55816364   -.6012665   -.9006326  -.21857943  -.08946204    -.5034439   -.6810899 0 1
                           0             0 28  3 2016  -.27510625   .39344215  -.59485173   -.9532337  -.18836457   -.1167445    -.4919034   -.7207676 0 1
                    11.97532   .0007132883 31 18 2006  -.22119194    .2182813    .3398562    .7335734   -.3740687    .4090539     .5385968    .9272752 0 1
                  -1.5836735    .013510846 31 18 2007    -.184003   .11139861      .46652     .613701   -.3626274   .31379485     .6421301      .87358 0 1
                   1.2689657   -.005916769 31 18 2008   -.1641445  .026334645   .54979223    .4284563   -.3553174   .22193155     .6775621      .71356 0 1
                   -3.098756    .005442893 31 18 2009  -.10864024  -.05653598     .600492    .3175632   -.3393796      .08887     .7179909    .6960016 0 1
                   -8.561855     .02122136 31 18 2010  -.09659414  -.11868455    .6925154    .3026466   -.3147526    .0569896     .8935719    .7554783 0 1
                    6.866157     .02879029 31 18 2011  -.08157914  -.21803303    .8140777    .3212237  -.29199573  -.04451777    1.0378708    .8961616 0 1
                    2.429369  -.0011951402 31 18 2012   -.0567903    -.242051    .8796297    .1868068    -.265088  .024126196    1.1941798    .6867321 0 1
                   -1.989827   -.007779721 31 18 2013  -.04370517  -.31458715    .9185467   .03241601   -.2214123  -.08807979    1.3021843    .5005748 0 1
                   .22089624    -.01868459 31 18 2014 -.033906706   -.3495028    .9449667   -.0374389   -.1843347 -.069355674    1.3794158    .4716379 0 1
                   .11128235  -.0043012574 32 23 2006   -.7643771   -.5162818   -.3291505     .414096   -.6431451    -.846158   -.34982875    .3053266 0 1
                   .01090145    .002477847 32 23 2007   -.7505687   -.5773636   -.2623397   .29384926   -.6261643   -.8379131    -.3002596    .2410758 0 1
                    .7078409    -.03855815 32 23 2008   -.7357259   -.6417707  -.19868354    .1524944   -.6137356   -.8351584   -.25750095   .14139338 0 1
                   -2.816991     .04575902 32 23 2009   -.7249346   -.6994354  -.14291452   .01933689   -.6001021   -.8444477   -.20808633   .07209162 0 1
                    2.422898   -.035074152 32 23 2010   -.7177013   -.7373554  -.10847956  -.06150593  -.59098035   -.8491185   -.16045187   .02337081 0 1
                  -4.0583024     .04133575 32 23 2011   -.7151187   -.7803815  -.07803272  -.10130744   -.5888594   -.8440191   -.11831725   .07349116 0 1
                   2.8342624   -.015723087 32 23 2012   -.7148868   -.8136601  -.06605188  -.19248393  -.58193624   -.8400126    -.0852288 -.035171006 0 1
                  -10.712678  -.0021221973 32 23 2013   -.7161653   -.8376102  -.06053599    -.315908   -.5796056   -.8379619   -.05987298  -.13837668 0 1
                           0   -.003282819 32 23 2014   -.7216688   -.8597494  -.05146606   -.4032112   -.5730453   -.8440244  -.031292744   -.2132469 0 1
                           0   .0003324337 32 23 2015    -.725682   -.8736054  -.04338742   -.4719104  -.56448233   -.8173651 -.0018199604  -.28537348 0 1
                           0     .04363326 32 23 2016    -.727131   -.8952292 -.032497507   -.5562292   -.5540532   -.8142039    .02149565   -.3521277 0 1
                           0     .09136026 33 14 2006   -.5590297   -.3699251  -1.0490344   -.9365398    -.410712   -.8343054     -.881998   -.7782007 0 1
                           0     .04322057 33 14 2007   -.5518271   -.4130601  -1.0195234   -.9792255   -.3914775   -.6668702    -.8642039   -.7972012 0 1
                           0    -.08305772 33 14 2008  -.54594713  -.50139356   -.9950192  -1.0277141   -.3910828   -.6846053    -.8483211   -.8237093 0 1
                           0    -.05152311 33 14 2009   -.5414557    -.579475   -.9730968  -1.0731288   -.3921263   -.7018773    -.8310958   -.8471273 0 1
                           0             0 33 14 2010  -.54796946   -.6313283   -.9560827  -1.0946468   -.3878219   -.6927995    -.8109732   -.8599495 0 1
                           0             0 33 14 2011   -.5416088  -.51882577   -.9435067   -1.130483  -.36778975   -.1864549    -.8019171   -.8838214 0 1
                           0             0 33 14 2012   -.5540586   -.5594485   -.9375467  -1.1562508   -.3718024  -.29443458    -.7952192   -.8969989 0 1
                           0             0 33 14 2013   -.5590308    -.612335   -.9317656   -1.193785   -.3693162   -.3800702    -.7846462   -.9226372 0 1
                           0             0 33 14 2014   -.5668753   -.6666742   -.9255474  -1.2132792   -.3669605   -.4305714    -.7789773   -.9285353 0 1
                           0             0 33 14 2015  -.58394194   -.7179068   -.9175639  -1.2231835   -.3795335   -.4840098    -.7688804    -.939143 0 1
                           0     .09747665 33 14 2016   -.5928264   -.7571037   -.9124928  -1.2453197   -.3831898   -.5288012    -.7651632   -.9560628 0 1
                   .09964561     .04390549 36 18 2006  -.22119194    .2182813    .3398562    .7335734   -.3740687    .4090539     .5385968    .9272752 0 1
                   -.3892307    .014672443 36 18 2007    -.184003   .11139861      .46652     .613701   -.3626274   .31379485     .6421301      .87358 0 1
                   -.0502615    -.04659684 36 18 2008   -.1641445  .026334645   .54979223    .4284563   -.3553174   .22193155     .6775621      .71356 0 1
                  .015656471   .0017848648 36 18 2009  -.10864024  -.05653598     .600492    .3175632   -.3393796      .08887     .7179909    .6960016 0 1
                    .4230738     .04094453 36 18 2010  -.09659414  -.11868455    .6925154    .3026466   -.3147526    .0569896     .8935719    .7554783 0 1
                    .6289749   -.017166141 36 18 2011  -.08157914  -.21803303    .8140777    .3212237  -.29199573  -.04451777    1.0378708    .8961616 0 1
                  -11.462083   -.012850057 36 18 2012   -.0567903    -.242051    .8796297    .1868068    -.265088  .024126196    1.1941798    .6867321 0 1
                   10.208496     .04528238 36 18 2013  -.04370517  -.31458715    .9185467   .03241601   -.2214123  -.08807979    1.3021843    .5005748 0 1
                 -.002993584    -.03882381 36 18 2014 -.033906706   -.3495028    .9449667   -.0374389   -.1843347 -.069355674    1.3794158    .4716379 0 1
                  .034711838     .02281242 36 18 2015 -.029668346   -.3967149    .9417148  -.17509994  -.14731087  -.13184361     1.404514    .3087605 0 1
                  -10.240214    -.01925854 36 18 2016  -.04324604     -.47006    .9344091  -.28613073   -.1579667   -.2136312    1.4204942   .17689686 0 1
                   .25034428             0 37  3 2010  -.25485873   2.0288453   -.6518729   -.6571813  -.27546376    .2270423    -.5917163  -.44704285 0 1
                   -9.277662             0 37  3 2011     -.24559   1.6222415   -.6344361   -.7174726  -.26235282   .10952318   -.57066697   -.5025138 0 1
                           0             0 37  3 2012  -.25184685     1.31267   -.6276366   -.7622755   -.2568892  .003526869   -.55436623   -.5530581 0 1
                           0             0 37  3 2013  -.24220595   1.0312085   -.6219793   -.8272409   -.2441468  -.08472925    -.5392359   -.6007122 0 1
                           0             0 40 10 2006  -.32378945   -.4621172  -1.1257854   -.9861168  -.14845937   -.6312383    -.9540728   -.7420297 0 1
                           0    .026150554 40 10 2007  -.26540643    -.498183  -1.1058149    -1.01455   -.0988713  -.58238053    -.9372557   -.7488079 0 1
                    11.09338     .12496987 40 10 2008  -.21996392   -.5561441  -1.0846677  -1.0452298  -.05620141   -.5955785    -.9227296   -.7596315 0 1
                   1.9853888    -.09988955 40 10 2009   -.1883081   -.6029475  -1.0654018  -1.0875415 -.011605667   -.5802824    -.9067446   -.7824084 0 1
                  -2.1769047      .0828963 40 10 2010   -.1557836   -.6331809   -1.053043   -1.114553  .030737676   -.5872167    -.8934116   -.8053197 0 1
                   .04075527    -.13412717 40 10 2011   -.1363123   -.6701091  -1.0430834  -1.1458058   .04062562   -.6088923    -.8776091   -.8250563 0 1
                  -.07221508             0 40 10 2012  -.13770063   -.6985171  -1.0361662  -1.1737823  .029101064   -.6060436     -.861595   -.8553593 0 1
                   .05438709     .13667665 40 10 2013  -.13514529   -.7216277  -1.0321916  -1.2096547  .026721714     -.59754    -.8483665   -.8867478 0 1
                  -4.6367006     -.1288886 40 10 2014  -.13068345   -.7290182  -1.0270319  -1.2378004   .00904037   -.5600482    -.8342248   -.9121373 0 1
                   -6.288092    .006291248 40 10 2015  -.10982981   -.7260799  -1.0255381  -1.2589794   .01926133  -.53782463     -.823168   -.9331345 0 1
                   10.161176  -.0001738891 40 10 2016  -.09765138    -.741742  -1.0240958  -1.2837437  .023847254   -.5465247    -.8136249   -.9520458 0 1
                    .9399757     .02299291 43 19 2006   1.3675498  -.21901283   -.8247516   -.4539051   1.7944455   1.2061343    -.7532216  -.25796574 0 1
                -.0012102127     -.0572724 43 19 2007   1.5640676  -.19486187   -.7907363   -.5262454     1.98017   1.3400645    -.7284812   -.3151047 0 1
                   -11.61211     .10597903 43 19 2008   1.6478975  -.21484283   -.7618105   -.6144678    1.999793   1.3082663    -.7061789   -.3860319 0 1
                           0   -.018910006 43 19 2009   1.6634414  -.13248321   -.7321151   -.6907768   2.0014472     1.60028     -.679543   -.4346979 0 1
                           0     .13425578 43 19 2010   1.8672647   .02617999   -.7175632   -.7334712    2.418605   2.1007862    -.6569471   -.4695939 0 1
                           0     .10598907 43 19 2011   2.1394713  -.02194485   -.7065763   -.7601909   2.7223766   1.9312136    -.6358413   -.4442975 0 1
                           0    -.13831043 43 19 2012   2.3140557  -.06688177   -.6996293   -.8092644     3.09724    1.765376    -.6186515   -.5046915 0 1
                           0     -.0448128 43 19 2013   2.4380846  -.12588945   -.6988693   -.8759033    3.382655   1.5973245    -.6047218   -.5713429 0 1
                           0     -.2064156 43 19 2014     2.51447 -.024938833   -.6968169     -.92763    3.559386   1.9531143   -.58652276    -.617911 0 1
                           0    .036450457 43 19 2015   2.5194426  -.13144583   -.6951051   -.9733247    3.613109    1.670537   -.56953114   -.6614799 0 1
                           0    -.07146596 43 19 2016    2.476447  -.19952947   -.6918949  -1.0217642    3.606691    1.455017    -.5571647   -.7020125 0 1
                           0             0 45 18 2006  -.22119194    .2182813    .3398562    .7335734   -.3740687    .4090539     .5385968    .9272752 0 1
                           0             0 45 18 2007    -.184003   .11139861      .46652     .613701   -.3626274   .31379485     .6421301      .87358 0 1
                           0             0 45 18 2008   -.1641445  .026334645   .54979223    .4284563   -.3553174   .22193155     .6775621      .71356 0 1
                           0             0 45 18 2009  -.10864024  -.05653598     .600492    .3175632   -.3393796      .08887     .7179909    .6960016 0 1
                           0             0 45 18 2010  -.09659414  -.11868455    .6925154    .3026466   -.3147526    .0569896     .8935719    .7554783 0 1
                           0             0 45 18 2011  -.08157914  -.21803303    .8140777    .3212237  -.29199573  -.04451777    1.0378708    .8961616 0 1
                           0     .08168495 45 18 2012   -.0567903    -.242051    .8796297    .1868068    -.265088  .024126196    1.1941798    .6867321 0 1
                           0     .02193831 45 18 2013  -.04370517  -.31458715    .9185467   .03241601   -.2214123  -.08807979    1.3021843    .5005748 0 1
                           0   -.011971377 45 18 2014 -.033906706   -.3495028    .9449667   -.0374389   -.1843347 -.069355674    1.3794158    .4716379 0 1
                           0    -.05902888 45 18 2015 -.029668346   -.3967149    .9417148  -.17509994  -.14731087  -.13184361     1.404514    .3087605 0 1
                    9.725683     .05585254 45 18 2016  -.04324604     -.47006    .9344091  -.28613073   -.1579667   -.2136312    1.4204942   .17689686 0 1
                   -3.987398      .0296032 48 15 2006   -.6299878  -.51146066   -.1593943    .7413161   -.6691451   -.8878852   -.07856676   -.1813704 0 1
                    6.173608  -.0018759668 48 15 2007   -.6014411   -.5501119   -.0981102    .6048872   -.6579152   -.8750369  -.018386925  -.05444953 0 1
                  .023412704     .07580752 48 15 2008   -.5729851   -.5962655  -.05066995     .373052   -.6402245   -.8550715  .0014505122  -.13636892 0 1
                  -.05007553    -.12723356 48 15 2009   -.5563743   -.6369237 -.006185102   .16534223   -.6298152   -.8388839    .02324785   -.2043318 0 1
                   .11684608    .032417778 48 15 2010   -.5334814   -.6086057  .010191674   .02940664   -.6121637   -.7974497    .06619407   -.2232624 0 1
                  -11.605373     .08021335 48 15 2011    -.522971   -.6385321   .04947682   .20404613   -.6069376    -.754374    .12557524    .2788913 0 1
                           0    -.06553223 48 15 2012   -.5100355   -.6720961   .04658636   .09194387   -.5871379   -.7494183    .14621523   .11899638 0 1
                    11.54398     .02190085 48 15 2013  -.49357685   -.7160076   .04937047 -.065694064  -.55426764   -.7627468     .1727835   -.0333434 0 1
                   .06819248    .008237213 48 15 2014   -.4820767   -.7516899   .04669877  -.19589216   -.5246958   -.7777919    .19064045   -.1064962 0 1
                   -2.264079     .07578475 48 15 2015   -.4803617   -.7535134  .027656937   -.3278083   -.5105906   -.7409879    .18614864   -.2073948 0 1
                   -9.348092     -.1820626 48 15 2016  -.46765605   -.7446832  .015366635   -.4510279   -.4917175   -.7271292    .18432403   -.2985099 0 1
                           0     .17422608 49  7 2006   -.9194757  -1.0634611   -.6245188 -.016486235   -.6909162   -.9118056    -.6426716  -.05928919 0 1
                           0    -.12981004 49  7 2007    -.920938  -1.0643167  -.57187057   -.1139896   -.6950354   -.9135984    -.6138641   -.1309857 0 1
                           0   -.012669206 49  7 2008   -.9222463  -1.0637548  -.52801895  -.21180224   -.6978999    -.914431   -.58743864   -.2032117 0 1
                           0   -.031746827 49  7 2009   -.9227372  -1.0639884   -.4799001   -.3207718   -.6999536   -.9158299    -.5574482    -.284984 0 1
                           0     .10017829 49  7 2010   -.9224407  -1.0639989   -.4557777   -.3969462   -.7016716   -.9170189    -.5245073   -.3327265 0 1
                           0    -.05165176 49  7 2011   -.9233372  -1.0611547   -.4376563   -.4878311   -.7030061   -.9134737   -.50090235   -.3931218 0 1
                           0  -.0044292547 49  7 2012   -.9259148  -1.0622456  -.42630175   -.5368409   -.7055444   -.9143279    -.4811617   -.4195299 0 1
                           0   -.012398176 49  7 2013   -.9269812  -1.0637208   -.4189372    -.618886    -.707822   -.9157423    -.4554866   -.4789502 0 1
                           0    .063060306 49  7 2014    -.928924  -1.0648206    -.410058   -.6672173   -.7089696   -.9169445    -.4319057  -.50434834 0 1
                           0    -.07377233 49  7 2015   -.9315764  -1.0612959   -.4004657   -.7080018   -.7105548   -.9179664    -.4036454  -.55140924 0 1
                           0    .004854724 49  7 2016   -.9319947  -1.0629137  -.39878145   -.7809715   -.7111087    -.918835     -.397877   -.6020528 0 1
                   11.524402   -.013370142 57 17 2006  -.16296527    .6910729   -.3045582  .005612827   -.1808903   1.8531897    -.2738446   -.4046522 0 1
                    .5906315    .003993168 57 17 2007  -.12760158   .49101025  -.22800286  -.04075513  -.13092873   1.5345836   -.21740285  -.34125745 0 1
                  -.06821251  -.0025590695 57 17 2008  -.08776941    .3052638   -.1803723  -.16230844  -.06853416   1.2620605    -.1950672   -.3785194 0 1
                  -.14050388  .00006390747 57 17 2009  -.04114436     .219573  -.14734696  -.28471035   .03233876   1.2815285   -.17635834   -.4039998 0 1
                    1.208785    .000520793 57 17 2010  -.03068115   .14808367  -.11283325   -.3432506   .07698809    1.312347   -.11264782   -.3949724 0 1
                  -.18023396  -.0011656716 57 17 2011 -.013190757   .07717608  -.07105823  -.29507726   .13015945   1.3152156   -.05299809   -.1800295 0 1
                  -1.5934553     .02740956 57 17 2012 .0042479215    -.070185  -.06048972   -.3672306   .18293183   1.0365621  -.006900111  -.26059642 0 1
                   1.2439432   -.018479317 57 17 2013 -.031245977  -.20052497  -.04833134  -.46385005   .15438074    .7951767    .04288261   -.3381898 0 1
                 -.024873734   -.007726917 57 17 2014  -.04983155   -.3074035  -.04137612   -.5252746    .1529525    .5999494    .08226909   -.3512666 0 1
                    .1773052 -.00027857616 57 17 2015   -.0478274  -.40346345  -.04957296   -.6064127    .1638868    .3986681     .0978829   -.4125164 0 1
                   .13076305 -.00007392839 57 17 2016  -.03238987   -.4827064  -.05711084   -.6811523   .19511434   .25336653    .10680893  -.46523115 0 1
                           0  -.0013496242 58 16 2006   -.3022504   -.4913982    -.720108  -.03593453   -.5597193   -.7641965    -.6259589    .3723705 0 1
                           0    .006659966 58 16 2007   -.2395132   -.4321118   -.6774417  -.15755105   -.5302695   -.7508265    -.5878164   .23465517 0 1
                           0    .014227089 58 16 2008  -.22326463    -.440414   -.6358768  -.28542194    -.509041   -.7282331    -.5511041    .0918867 0 1
                           0   -.015884116 58 16 2009  -.21753153   -.4913557   -.5940421   -.3728692   -.4913181   -.7234161    -.4989752  .029678315 0 1
                   11.298646   .0011328235 58 16 2010  -.21532053  -.52679497  -.57488585   -.4301473   -.4792644   -.7000387    -.4642216  -.01409165 0 1
                  -11.298646    .001373157 58 16 2011  -.22054853  -.55531734   -.5525793   -.4654091   -.4546941   -.6569347    -.4288518  -.01091895 0 1
                           0    .008064672 58 16 2012  -.23846403  -.59261084    -.539386   -.5474964   -.4384836   -.6404495    -.3987256  -.13989535 0 1
                           0    .005538076 58 16 2013  -.25485054   -.6183102   -.5446971   -.6288981   -.4180189   -.6246612    -.3969437  -.26041684 0 1
                           0    .009951472 58 16 2014  -.26396236   -.6311159   -.5430793   -.7035896   -.3838884  -.58899415    -.3855624   -.3492266 0 1
                           0     -.0466197 58 16 2015  -.27708802   -.6667495  -.53980047   -.7786865    -.362593     -.61238    -.3717429   -.4374855 0 1
                    7.426246     .00992981 58 16 2016   -.2881736   -.6913921   -.5311611   -.8527237   -.3452259   -.6049893    -.3537157  -.51185495 0 1
                           0             0 60 18 2006  -.22119194    .2182813    .3398562    .7335734   -.3740687    .4090539     .5385968    .9272752 0 1
                           0             0 60 18 2007    -.184003   .11139861      .46652     .613701   -.3626274   .31379485     .6421301      .87358 0 1
                           0             0 60 18 2008   -.1641445  .026334645   .54979223    .4284563   -.3553174   .22193155     .6775621      .71356 0 1
                           0             0 60 18 2009  -.10864024  -.05653598     .600492    .3175632   -.3393796      .08887     .7179909    .6960016 0 1
                    8.142585     .25826448 60 18 2010  -.09659414  -.11868455    .6925154    .3026466   -.3147526    .0569896     .8935719    .7554783 0 1
                  -.10019493    -.25631073 60 18 2011  -.08157914  -.21803303    .8140777    .3212237  -.29199573  -.04451777    1.0378708    .8961616 0 1
                    -8.04239   .0024555265 60 18 2012   -.0567903    -.242051    .8796297    .1868068    -.265088  .024126196    1.1941798    .6867321 0 1
                           0   -.004409286 60 18 2013  -.04370517  -.31458715    .9185467   .03241601   -.2214123  -.08807979    1.3021843    .5005748 0 1
                    7.584398             0 60 18 2014 -.033906706   -.3495028    .9449667   -.0374389   -.1843347 -.069355674    1.3794158    .4716379 0 1
                   -.3128023      .2130519 60 18 2015 -.029668346   -.3967149    .9417148  -.17509994  -.14731087  -.13184361     1.404514    .3087605 0 1
                   .22450542     .04965213 60 18 2016  -.04324604     -.47006    .9344091  -.28613073   -.1579667   -.2136312    1.4204942   .17689686 0 1
                           0     -.1838541 62 16 2006   -.3022504   -.4913982    -.720108  -.03593453   -.5597193   -.7641965    -.6259589    .3723705 0 1
                           0      .1624922 62 16 2007   -.2395132   -.4321118   -.6774417  -.15755105   -.5302695   -.7508265    -.5878164   .23465517 0 1
                           0      .0589261 62 16 2008  -.22326463    -.440414   -.6358768  -.28542194    -.509041   -.7282331    -.5511041    .0918867 0 1
                           0    -.07474253 62 16 2009  -.21753153   -.4913557   -.5940421   -.3728692   -.4913181   -.7234161    -.4989752  .029678315 0 1
                           0    -.04955459 62 16 2010  -.21532053  -.52679497  -.57488585   -.4301473   -.4792644   -.7000387    -.4642216  -.01409165 0 1
                           0    -.05996171 62 16 2011  -.22054853  -.55531734   -.5525793   -.4654091   -.4546941   -.6569347    -.4288518  -.01091895 0 1
                           0      .3514006 62 16 2012  -.23846403  -.59261084    -.539386   -.5474964   -.4384836   -.6404495    -.3987256  -.13989535 0 1
                           0   -.026771903 62 16 2013  -.25485054   -.6183102   -.5446971   -.6288981   -.4180189   -.6246612    -.3969437  -.26041684 0 1
                           0     .02248806 62 16 2014  -.26396236   -.6311159   -.5430793   -.7035896   -.3838884  -.58899415    -.3855624   -.3492266 0 1
                           0    .004653573 62 16 2015  -.27708802   -.6667495  -.53980047   -.7786865    -.362593     -.61238    -.3717429   -.4374855 0 1
                           0     -.3522437 62 16 2016   -.2881736   -.6913921   -.5311611   -.8527237   -.3452259   -.6049893    -.3537157  -.51185495 0 1
                           0  -.0013919142 63 15 2006   -.6299878  -.51146066   -.1593943    .7413161   -.6691451   -.8878852   -.07856676   -.1813704 0 1
                           0    .006406098 63 15 2007   -.6014411   -.5501119   -.0981102    .6048872   -.6579152   -.8750369  -.018386925  -.05444953 0 1
                           0   .0003771782 63 15 2008   -.5729851   -.5962655  -.05066995     .373052   -.6402245   -.8550715  .0014505122  -.13636892 0 1
                           0    -.00655064 63 15 2009   -.5563743   -.6369237 -.006185102   .16534223   -.6298152   -.8388839    .02324785   -.2043318 0 1
                           0   -.003422987 63 15 2010   -.5334814   -.6086057  .010191674   .02940664   -.6121637   -.7974497    .06619407   -.2232624 0 1
                           0             0 63 15 2011    -.522971   -.6385321   .04947682   .20404613   -.6069376    -.754374    .12557524    .2788913 0 1
                           0             0 63 15 2012   -.5100355   -.6720961   .04658636   .09194387   -.5871379   -.7494183    .14621523   .11899638 0 1
                           0             0 63 15 2013  -.49357685   -.7160076   .04937047 -.065694064  -.55426764   -.7627468     .1727835   -.0333434 0 1
                           0             0 63 15 2014   -.4820767   -.7516899   .04669877  -.19589216   -.5246958   -.7777919    .19064045   -.1064962 0 1
                end
                
                *KEEP RELEVANT SAMPLE
                keep if condition==0 & sample==1
                
                *SEPARATE REGRESSIONS
                xtset id year
                reghdfe y  L.c.x##(L.c.intra1 L.c.intra2 L.c.inter1 L.c.inter2), absorb(year id) cluster(id) old
                reghdfe y  L.c.x##(L.c.newintra1 L.c.newintra2 L.c.newinter1 L.c.newinter2), absorb(year id) cluster(id) old
                
                foreach var of varlist x intra1 intra2 inter1 inter2 newintra1 newintra2 newinter1 newinter2{
                    gen L`var'= L.`var'
                    gen LxL`var'=  Lx*L`var'
                }
                
                expand 2, gen(which)
                lab drop `:val lab which'
                gen which0=0.which
                gen which1=1.which
                
                egen ID= group(id which)
                xtset ID year
                
                foreach var of varlist intra1 intra2 inter1 inter2{
                    replace LxL`var'=0 if which1
                }
                
                foreach var of varlist newintra1 newintra2 newinter1 newinter2{
                    replace LxL`var'=0 if which0
                }
                
                *JOINT REGRESSION
                
                reghdfe y 0.which#(c.Lx c.Lintra1 c.LxLintra1 c.Lintra2 c.LxLintra2 c.Linter1 c.LxLinter1 c.Linter2 c.LxLinter2) ///
                1.which#(c.Lx c.Lnewintra1 c.Lnewintra2 c.Lnewinter1 c.Lnewinter2 c.LxLnewintra1 c.LxLnewintra2 c.LxLnewinter1 c.LxLnewinter2), ///
                absorb(which0#year which0#id which1#year which1#id) cluster(ID) old

                Results follow in #9.
                Last edited by Andrew Musau; 08 Apr 2023, 15:31.

                Comment


                • #9
                  Res.:

                  Code:
                  . *SEPARATE REGRESSIONS
                  
                  . reghdfe y  L.c.x##(L.c.intra1 L.c.intra2 L.c.inter1 L.c.inter2), absorb(year id) cluster(id) old
                  (running historical version of reghdfe)
                  (converged in 7 iterations)
                  
                  HDFE Linear regression                            Number of obs   =        178
                  Absorbing 2 HDFE groups                           F(   9,     20) =       2.15
                  Statistics robust to heteroskedasticity           Prob > F        =     0.0735
                                                                    R-squared       =     0.1164
                                                                    Adj R-squared   =    -0.1334
                                                                    Within R-sq.    =     0.0370
                  Number of clusters (id)      =         21         Root MSE        =     3.8120
                  
                                                        (Std. err. adjusted for 21 clusters in id)
                  --------------------------------------------------------------------------------
                                 |               Robust
                               y | Coefficient  std. err.      t    P>|t|     [95% conf. interval]
                  ---------------+----------------------------------------------------------------
                               x |
                             L1. |   17.27443   10.18011     1.70   0.105    -3.960902    38.50977
                                 |
                          intra1 |
                             L1. |   3.083375   1.460364     2.11   0.048     .0371094    6.129641
                                 |
                          intra2 |
                             L1. |    1.30309   1.213887     1.07   0.296    -1.229035    3.835215
                                 |
                          inter1 |
                             L1. |   5.593294   4.105976     1.36   0.188    -2.971623    14.15821
                                 |
                          inter2 |
                             L1. |   4.513867   5.953203     0.76   0.457    -7.904296    16.93203
                                 |
                  cL.x#cL.intra1 |  -1.534335   6.661465    -0.23   0.820    -15.42991    12.36124
                                 |
                  cL.x#cL.intra2 |   26.73152   25.23355     1.06   0.302    -25.90475    79.36778
                                 |
                  cL.x#cL.inter1 |  -11.68373   11.91053    -0.98   0.338    -36.52866    13.16119
                                 |
                  cL.x#cL.inter2 |   11.86919   11.72143     1.01   0.323    -12.58129    36.31967
                  --------------------------------------------------------------------------------
                  
                  Absorbed degrees of freedom:
                  -----------------------------------------------------------------+
                     Absorbed FE |  Num. Coefs.  =   Categories  -   Redundant     |
                  ---------------+-------------------------------------------------|
                            year |           10              10              0     |
                              id |            0              21             21 *   |
                  -----------------------------------------------------------------+
                  * = fixed effect nested within cluster; treated as redundant for DoF computation
                  
                  . reghdfe y  L.c.x##(L.c.newintra1 L.c.newintra2 L.c.newinter1 L.c.newinter2), absorb(year id) cluster(id) old
                  (running historical version of reghdfe)
                  (converged in 7 iterations)
                  
                  HDFE Linear regression                            Number of obs   =        178
                  Absorbing 2 HDFE groups                           F(   9,     20) =       2.85
                  Statistics robust to heteroskedasticity           Prob > F        =     0.0245
                                                                    R-squared       =     0.1161
                                                                    Adj R-squared   =    -0.1337
                                                                    Within R-sq.    =     0.0367
                  Number of clusters (id)      =         21         Root MSE        =     3.8126
                  
                                                           (Std. err. adjusted for 21 clusters in id)
                  -----------------------------------------------------------------------------------
                                    |               Robust
                                  y | Coefficient  std. err.      t    P>|t|     [95% conf. interval]
                  ------------------+----------------------------------------------------------------
                                  x |
                                L1. |   8.188585   6.092682     1.34   0.194    -4.520527     20.8977
                                    |
                          newintra1 |
                                L1. |   2.080004   .9383736     2.22   0.038     .1225908    4.037417
                                    |
                          newintra2 |
                                L1. |   .4806622   .7827898     0.61   0.546    -1.152209    2.113533
                                    |
                          newinter1 |
                                L1. |     2.5215   1.812295     1.39   0.179    -1.258882    6.301881
                                    |
                          newinter2 |
                                L1. |  -.5059913   1.454123    -0.35   0.731    -3.539238    2.527255
                                    |
                  cL.x#cL.newintra1 |  -14.43056   20.37157    -0.71   0.487    -56.92491    28.06379
                                    |
                  cL.x#cL.newintra2 |    25.2368   25.10567     1.01   0.327    -27.13272    77.60631
                                    |
                  cL.x#cL.newinter1 |  -15.19689   10.97378    -1.38   0.181    -38.08779    7.694013
                                    |
                  cL.x#cL.newinter2 |   12.99872   15.93214     0.82   0.424    -20.23514    46.23258
                  -----------------------------------------------------------------------------------
                  
                  Absorbed degrees of freedom:
                  --------------------------------------------------------------------+
                        Absorbed FE |  Num. Coefs.  =   Categories  -   Redundant     |
                  ------------------+-------------------------------------------------|
                               year |           10              10              0     |
                                 id |            0              21             21 *   |
                  --------------------------------------------------------------------+
                  * = fixed effect nested within cluster; treated as redundant for DoF computation
                  
                  
                  . *JOINT REGRESSION
                  .
                  . reghdfe y 0.which#(c.Lx c.Lintra1 c.LxLintra1 c.Lintra2 c.LxLintra2 c.Linter1 c.LxLinter1 c.Linter2 c.LxLinter2) ///
                  > 1.which#(c.Lx c.Lnewintra1 c.Lnewintra2 c.Lnewinter1 c.Lnewinter2 c.LxLnewintra1 c.LxLnewintra2 c.LxLnewinter1 c.LxLnewinter2), ///
                  > absorb(which0#year which0#id which1#year which1#id) cluster(ID) old
                  (running historical version of reghdfe)
                  (converged in 5 iterations)
                  
                  HDFE Linear regression                            Number of obs   =        356
                  Absorbing 4 HDFE groups                           F(  18,     41) =       2.56
                  Statistics robust to heteroskedasticity           Prob > F        =     0.0064
                                                                    R-squared       =     0.1162
                                                                    Adj R-squared   =    -0.3408
                                                                    Within R-sq.    =     0.0369
                  Number of clusters (ID)      =         42         Root MSE        =     4.1403
                  
                                                              (Std. err. adjusted for 42 clusters in ID)
                  --------------------------------------------------------------------------------------
                                       |               Robust
                                     y | Coefficient  std. err.      t    P>|t|     [95% conf. interval]
                  ---------------------+----------------------------------------------------------------
                            which#c.Lx |
                                    0  |   17.27443   10.06939     1.72   0.094    -3.061106    37.60998
                                    1  |   8.188585   6.026416     1.36   0.182    -3.982009    20.35918
                                       |
                       which#c.Lintra1 |
                                    0  |   3.083375   1.444481     2.13   0.039     .1661873    6.000563
                                       |
                     which#c.LxLintra1 |
                                    0  |  -1.534336   6.589012    -0.23   0.817    -14.84112    11.77244
                                       |
                       which#c.Lintra2 |
                                    0  |    1.30309   1.200685     1.09   0.284    -1.121742    3.727923
                                       |
                     which#c.LxLintra2 |
                                    0  |   26.73152    24.9591     1.07   0.290    -23.67442    77.13745
                                       |
                       which#c.Linter1 |
                                    0  |   5.593294   4.061319     1.38   0.176    -2.608706    13.79529
                                       |
                     which#c.LxLinter1 |
                                    0  |  -11.68373   11.78099    -0.99   0.327    -35.47592    12.10845
                                       |
                       which#c.Linter2 |
                                    0  |   4.513867   5.888454     0.77   0.448    -7.378107    16.40584
                                       |
                     which#c.LxLinter2 |
                                    0  |   11.86919   11.59395     1.02   0.312    -11.54526    35.28364
                                       |
                    which#c.Lnewintra1 |
                                    1  |   2.080004   .9281676     2.24   0.031     .2055313    3.954476
                                       |
                    which#c.Lnewintra2 |
                                    1  |   .4806622   .7742759     0.62   0.538     -1.08302    2.044344
                                       |
                    which#c.Lnewinter1 |
                                    1  |     2.5215   1.792584     1.41   0.167    -1.098697    6.141697
                                       |
                    which#c.Lnewinter2 |
                                    1  |  -.5059913   1.438307    -0.35   0.727    -3.410711    2.398729
                                       |
                  which#c.LxLnewintra1 |
                                    1  |  -14.43056      20.15    -0.72   0.478    -55.12432     26.2632
                                       |
                  which#c.LxLnewintra2 |
                                    1  |    25.2368   24.83262     1.02   0.315    -24.91369    75.38729
                                       |
                  which#c.LxLnewinter1 |
                                    1  |  -15.19689   10.85442    -1.40   0.169    -37.11784    6.724066
                                       |
                  which#c.LxLnewinter2 |
                                    1  |   12.99872   15.75886     0.82   0.414    -18.82694    44.82438
                  --------------------------------------------------------------------------------------
                  
                  Absorbed degrees of freedom:
                  -----------------------------------------------------------------------+
                           Absorbed FE |  Num. Coefs.  =   Categories  -   Redundant     |
                  ---------------------+-------------------------------------------------|
                           which0#year |           20              20              0     |
                             which0#id |            0              42             42 *   |
                           which1#year |            0              20             20     |
                             which1#id |            0              42             42 *   |
                  -----------------------------------------------------------------------+
                  * = fixed effect nested within cluster; treated as redundant for DoF computation
                  Last edited by Andrew Musau; 08 Apr 2023, 15:31.

                  Comment


                  • #10
                    Dear Andrew Musau , thanks a lot for your help! I had to change the "old" option at the end of the "reghdfe" command becuase it gave error. However, I see that when clustering by sectors (I have 33 sectors, and these "intra" "inter" variables are at the sector-year level) the coefficient for cL.x#cL.intra2 is highly significant from the separate model while it is not significant from the joint model (see the three regressions below). And I am afraid this will affect the test for these two parameters. Is this normal, or should not only the coefficients but also their std be the same? Notice that when clustering by firms (id) this difference does not happen. Unfortunately I think I have to cluster the errors at sectoral level to acknowledge that firms belong to specific sectors.

                    I thought that 33 sectors would be enough to cluster at the sectoral level, but is odd to see that change in the significance of the parameters. Do you have any idea what might be happening here?

                    Code:
                    HDFE Linear regression                            Number of obs   =     37,872
                    Absorbing 2 HDFE groups                           F(   9,     32) =       3.80
                    Statistics robust to heteroskedasticity           Prob > F        =     0.0024
                                                                      R-squared       =     0.0510
                                                                      Adj R-squared   =    -0.0830
                                                                      Within R-sq.    =     0.0002
                    Number of clusters (sectors) =         33         Root MSE        =     3.8265
                    
                                                     (Std. Err. adjusted for 33 clusters in sectors)
                    --------------------------------------------------------------------------------
                                   |               Robust
                                 y |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
                    ---------------+----------------------------------------------------------------
                                 x |
                               L1. |   .1112473   .2827881     0.39   0.697    -.4647732    .6872679
                                   |
                            intra1 |
                               L1. |  -.0234425   .0786085    -0.30   0.767    -.1835627    .1366777
                                   |
                            intra2 |
                               L1. |  -.0668477    .049672    -1.35   0.188    -.1680262    .0343308
                                   |
                            inter1 |
                               L1. |   .0204893   .1960318     0.10   0.917    -.3788144    .4197931
                                   |
                            inter2 |
                               L1. |   .0476816   .1243435     0.38   0.704    -.2055978     .300961
                                   |
                    cL.x#cL.intra1 |  -.1089106   .3283048    -0.33   0.742    -.7776457    .5598245
                                   |
                    cL.x#cL.intra2 |    .498998   .1715671     2.91   0.007     .1495273    .8484688
                                   |
                    cL.x#cL.inter1 |  -.1903087   .3177387    -0.60   0.553    -.8375212    .4569038
                                   |
                    cL.x#cL.inter2 |  -.1690013   .1552372    -1.09   0.284    -.4852092    .1472066
                                   |
                             _cons |   -.132943   .0128464   -10.35   0.000    -.1591102   -.1067758
                    --------------------------------------------------------------------------------
                    Code:
                    HDFE Linear regression                            Number of obs   =     37,872
                    Absorbing 2 HDFE groups                           F(   9,     32) =       2.36
                    Statistics robust to heteroskedasticity           Prob > F        =     0.0357
                                                                      R-squared       =     0.0511
                                                                      Adj R-squared   =    -0.0828
                                                                      Within R-sq.    =     0.0003
                    Number of clusters (sectors) =         33         Root MSE        =     3.8262
                    
                                                        (Std. Err. adjusted for 33 clusters in sectors)
                    -----------------------------------------------------------------------------------
                                      |               Robust
                                    y |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
                    ------------------+----------------------------------------------------------------
                                    x |
                                  L1. |   .1697526   .2674666     0.63   0.530    -.3750591    .7145642
                                      |
                            newintra1 |
                                  L1. |   .0135361   .0385253     0.35   0.728    -.0649373    .0920096
                                      |
                            newintra2 |
                                  L1. |  -.0749674    .055964    -1.34   0.190    -.1889623    .0390275
                                      |
                            newinter1 |
                                  L1. |    .120353    .160004     0.75   0.457    -.2055646    .4462706
                                      |
                            newinter2 |
                                  L1. |   .1071254   .1255942     0.85   0.400    -.1487016    .3629525
                                      |
                    cL.x#cL.newintra1 |  -.6915813   .3276264    -2.11   0.043    -1.358934   -.0242283
                                      |
                    cL.x#cL.newintra2 |   .9539952    .411278     2.32   0.027     .1162494    1.791741
                                      |
                    cL.x#cL.newinter1 |   .2514889   .4660658     0.54   0.593     -.697856    1.200834
                                      |
                    cL.x#cL.newinter2 |  -.5283691   .2938731    -1.80   0.082    -1.126969    .0702307
                                      |
                                _cons |  -.1367985   .0107057   -12.78   0.000    -.1586052   -.1149917
                    -----------------------------------------------------------------------------------
                    Code:
                    HDFE Linear regression                            Number of obs   =     75,744
                    Absorbing 4 HDFE groups                           F(  18,   9329) =       0.82
                    Statistics robust to heteroskedasticity           Prob > F        =     0.6822
                                                                      R-squared       =     0.0510
                                                                      Adj R-squared   =    -0.2600
                                                                      Within R-sq.    =     0.0003
                    Number of clusters (ID)      =      9,330         Root MSE        =     4.1274
                    
                                                             (Std. Err. adjusted for 9,330 clusters in ID)
                    --------------------------------------------------------------------------------------
                                         |               Robust
                                       y |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
                    ---------------------+----------------------------------------------------------------
                              which#c.Lx |
                                      0  |   .1112473   .2942379     0.38   0.705    -.4655231    .6880178
                                      1  |   .1697525   .2957856     0.57   0.566    -.4100518    .7495569
                                         |
                         which#c.Lintra1 |
                                      0  |  -.0234425    .120619    -0.19   0.846    -.2598822    .2129971
                                         |
                       which#c.LxLintra1 |
                                      0  |  -.1089106   .3226911    -0.34   0.736    -.7414557    .5236344
                                         |
                         which#c.Lintra2 |
                                      0  |  -.0668477   .0820138    -0.82   0.415    -.2276126    .0939172
                                         |
                       which#c.LxLintra2 |
                                      0  |    .498998   .3527799     1.41   0.157    -.1925276    1.190524
                                         |
                         which#c.Linter1 |
                                      0  |   .0204893   .1683854     0.12   0.903    -.3095828    .3505614
                                         |
                       which#c.LxLinter1 |
                                      0  |  -.1903087   .3913039    -0.49   0.627    -.9573498    .5767323
                                         |
                         which#c.Linter2 |
                                      0  |   .0476816   .1042217     0.46   0.647    -.1566157    .2519789
                                         |
                       which#c.LxLinter2 |
                                      0  |  -.1690013   .2773577    -0.61   0.542    -.7126829    .3746803
                                         |
                      which#c.Lnewintra1 |
                                      1  |   .0135361   .0830415     0.16   0.871    -.1492434    .1763157
                                         |
                      which#c.Lnewintra2 |
                                      1  |  -.0749674   .0635654    -1.18   0.238    -.1995695    .0496348
                                         |
                      which#c.Lnewinter1 |
                                      1  |    .120353    .161196     0.75   0.455    -.1956264    .4363324
                                         |
                      which#c.Lnewinter2 |
                                      1  |   .1071254   .1150265     0.93   0.352    -.1183517    .3326026
                                         |
                    which#c.LxLnewintra1 |
                                      1  |  -.6915813   .4322574    -1.60   0.110      -1.5389    .1557375
                                         |
                    which#c.LxLnewintra2 |
                                      1  |   .9539952   .4457869     2.14   0.032     .0801555    1.827835
                                         |
                    which#c.LxLnewinter1 |
                                      1  |   .2514888   .5279739     0.48   0.634    -.7834553    1.286433
                                         |
                    which#c.LxLnewinter2 |
                                      1  |  -.5283691   .4166604    -1.27   0.205    -1.345114    .2883761
                                         |
                                   _cons |  -.1348707   .0089037   -15.15   0.000     -.152324   -.1174175
                    --------------------------------------------------------------------------------------

                    Comment


                    • #11
                      You need to group the sector variable as well.

                      Code:
                      egen SECID= group(sector which)
                                 .
                                 .
                                 .
                      reghdfe y 0.which#(...) 1.which#(c...), ///
                      absorb(which0#year which0#id which1#year which1#id) cluster(SECID)
                      33 clusters is fine.

                      Comment


                      • #12
                        Thanks a lot Andrew Musau!

                        Comment


                        • #13
                          If the dep variable is the growth rate of firms' sales, the "x" variable is the growth rate of firms capacity and the newintra2 variable is standardized. Would the interpretation of this interaction in the second table in #10 be: increasing a 1 standard deviation in newintra2 increase firms' sales by 0.95% for those firms increasing their capacity? Or should I also include: for those firms increasing their capacity 1%?

                          Comment


                          • #14
                            As your question is different from the topic covered in this thread, please start a new thread and title it appropriately. Also, show your results when asking your question.

                            Comment

                            Working...
                            X