Hi Statalist,
After running a SARIMA model that necessitated seasonal differencing, I am unable to translate the coefficient for level/step change (here -1.636669) in pre-differenced value terms.
i.e. in a manner that I could write up as % change in visit_rate in post-intervention period, relative to pre-intervention period.
Is there an approach to get this using Stata?
I would very much appreciate any feedback or guidance.
visit_rate is my dependent variable.
level is a step function, representing an intervention (abrupt, permanent change).
Results:

Example of data:
I am using Stata v.16.1.
Thanks.
After running a SARIMA model that necessitated seasonal differencing, I am unable to translate the coefficient for level/step change (here -1.636669) in pre-differenced value terms.
i.e. in a manner that I could write up as % change in visit_rate in post-intervention period, relative to pre-intervention period.
Is there an approach to get this using Stata?
I would very much appreciate any feedback or guidance.
Code:
arima visit_rate level, arima(0,0,1) sarima(0,1,1,12)
level is a step function, representing an intervention (abrupt, permanent change).
Results:
Example of data:
Code:
* Example generated by -dataex-. For more info, type help dataex clear input float yearmonth double visit_rate float level 612 5.480198860168457 0 613 4.896322250366211 0 614 1.7097431421279907 0 615 6.252145290374756 0 616 8.064885139465332 0 617 3.579571485519409 0 618 4.7210845947265625 0 619 8.554865837097168 0 620 3.740657091140747 0 621 3.05062198638916 0 622 7.611184597015381 0 623 6.08182692527771 0 624 4.552469253540039 0 625 5.855523109436035 0 626 9.778051376342773 0 627 4.190736770629883 0 628 4.0452961921691895 0 629 6.049510955810547 0 630 6.9225077629089355 0 631 5.969388008117676 0 632 6.711655139923096 0 633 3.455566883087158 0 634 8.993709564208984 0 635 7.1164703369140625 0 636 5.239231109619141 0 637 12.370341300964355 0 638 6.2445549964904785 0 639 6.980866432189941 0 640 3.1489439010620117 0 641 6.801361560821533 0 642 6.860568523406982 0 643 6.342059135437012 0 644 6.6368489265441895 0 645 4.399888515472412 0 646 6.8126020431518555 0 647 6.515420436859131 0 648 6.218238830566406 0 649 6.525661468505859 0 650 6.71255350112915 0 651 7.386298179626465 0 652 8.236398696899414 0 653 5.731778621673584 0 654 5.851230144500732 0 655 6.391056537628174 0 656 9.78707218170166 0 657 5.335531711578369 0 658 5.253623008728027 0 659 7.071256160736084 0 660 8.88888931274414 0 661 6.722689151763916 0 662 7.236841678619385 0 663 5.594405651092529 0 664 7.518796920776367 0 665 6.201550483703613 0 666 4.477612018585205 0 667 6.428571701049805 0 668 8.333333015441895 0 669 9.219858169555664 0 670 7.258064270019531 0 671 6.097775459289551 0 672 4.93748664855957 0 673 9.86867618560791 0 674 7.934776306152344 0 675 12.59492015838623 0 676 4.205305099487305 0 677 6.224079132080078 0 678 5.248274803161621 0 679 6.01081657409668 0 680 2.2186148166656494 0 681 9.630735397338867 0 682 5.381473064422607 0 683 7.327224969863892 0 684 9.272976875305176 0 685 7.116933822631836 0 686 9.187352180480957 0 687 5.838759422302246 0 688 5.537591457366943 0 689 8.54749584197998 0 690 9.985916137695313 0 691 7.205755233764648 0 692 3.8145639896392822 0 693 3.387136220932007 0 694 5.074203014373779 0 695 8.936643362045288 0 696 12.799083709716797 0 697 9.707664489746094 0 698 6.813113212585449 0 699 6.499801158905029 1 700 6.126939296722412 1 701 14.210118293762207 1 702 4.911804676055908 1 703 7.5343756675720215 1 704 4.770449161529541 1 705 6.923856258392334 1 706 1.8975331783294678 1 707 4.878746390342712 1 708 7.859959602355957 1 709 6.875404357910156 1 710 7.249350070953369 1 711 7.858653545379639 1 712 4.149695873260498 1 713 4.078384876251221 1 714 4.43730354309082 1 715 5.287609100341797 1 716 3.485776901245117 1 717 3.8914425373077393 1 718 7.635324954986572 1 end format %tm yearmonth
Thanks.