Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • High VIF and presence of interaction terms

    Hello everyone,
    I hope you are doing well.

    Statement of the problem:
    -I have long panel (6 groups near 100 months) with heteroskedasticity and serial correlation.
    -I have used xtpcse and xtgls commands to check my hypotheses.
    -There are 2 interaction terms of variables in model + age and age^2 variables in the model (in fact 3 interaction terms).
    -VIF,unc command shows high values (>10) in model.


    Question:

    1.In this case shall I consider the VIF values in the model with interaction terms and remove variables with high VIF values from model?
    2. Or just I should consider the VIF of model without interaction terms?

    Thank you in advance.

    Best Regards,
    Michael




  • #2
    Michael:
    interactions inflate -vif- (and unavoidably so):
    Code:
    . use "C:\Program Files\Stata17\ado\base\a\auto.dta"
    (1978 automobile data)
    
    . regress price c.mpg##c.mpg i.foreign
    
          Source |       SS           df       MS      Number of obs   =        74
    -------------+----------------------------------   F(3, 70)        =     15.52
           Model |   253687595         3  84562531.8   Prob > F        =    0.0000
        Residual |   381377801        70   5448254.3   R-squared       =    0.3995
    -------------+----------------------------------   Adj R-squared   =    0.3737
           Total |   635065396        73  8699525.97   Root MSE        =    2334.1
    
    ------------------------------------------------------------------------------
           price | Coefficient  Std. err.      t    P>|t|     [95% conf. interval]
    -------------+----------------------------------------------------------------
             mpg |  -1298.763   278.4207    -4.66   0.000    -1854.056   -743.4705
                 |
     c.mpg#c.mpg |   20.95049   5.706873     3.67   0.000     9.568489    32.33249
                 |
         foreign |
        Foreign  |   1702.625   645.9568     2.64   0.010     414.3051    2990.945
           _cons |   23124.82   3237.562     7.14   0.000     16667.71    29581.94
    ------------------------------------------------------------------------------
    
    . estat vif
    
        Variable |       VIF       1/VIF  
    -------------+----------------------
             mpg |     34.77    0.028764
     c.mpg#c.mpg |     34.72    0.028803
       1.foreign |      1.18    0.844610
    -------------+----------------------
        Mean VIF |     23.56
    
    . regress price c.mpg i.foreign
    
          Source |       SS           df       MS      Number of obs   =        74
    -------------+----------------------------------   F(2, 71)        =     14.07
           Model |   180261702         2  90130850.8   Prob > F        =    0.0000
        Residual |   454803695        71  6405685.84   R-squared       =    0.2838
    -------------+----------------------------------   Adj R-squared   =    0.2637
           Total |   635065396        73  8699525.97   Root MSE        =    2530.9
    
    ------------------------------------------------------------------------------
           price | Coefficient  Std. err.      t    P>|t|     [95% conf. interval]
    -------------+----------------------------------------------------------------
             mpg |  -294.1955   55.69172    -5.28   0.000    -405.2417   -183.1494
                 |
         foreign |
        Foreign  |   1767.292    700.158     2.52   0.014     371.2169    3163.368
           _cons |   11905.42   1158.634    10.28   0.000     9595.164    14215.67
    ------------------------------------------------------------------------------
    
    . estat vif
    
        Variable |       VIF       1/VIF  
    -------------+----------------------
             mpg |      1.18    0.845238
       1.foreign |      1.18    0.845238
    -------------+----------------------
        Mean VIF |      1.18
    
    .
    That said, a VIF>10 with interaction should not be a reason of concern.

    As an aside, please share what you typed and what Stata gave you back (as per FAQ). Thanks.
    Kind regards,
    Carlo
    (Stata 19.0)

    Comment


    • #3
      Thank you Carlo for your response.
      After running regression I ran VIF code:

      Code:
      . vif,unc
      
          Variable |       VIF       1/VIF  
      -------------+----------------------
      cd |      2.05    0.487467
      np |      2.86    0.349621
      1.generation |      1.59    0.627913
      ap |     22.73    0.043987
      transition |      1.14    0.873848
      ibc |     26.15    0.038239
      seasonality |      1.14    0.878726
      -------------+----------------------
          Mean VIF |      8.24
      and then I removed ibc from the model and get:
      Code:
          Variable |       VIF       1/VIF  
      -------------+----------------------
      cd |      1.90    0.524943
      np |      2.59    0.385544
      1.generation |      1.47    0.681975
      ap |      2.16    0.462282
      transition |      1.13    0.887466
      seasonality |      1.13    0.887523
      -------------+----------------------
          Mean VIF |      1.73
      after the model with interactions:

      Code:
      .    vif,unc
      
          Variable |       VIF       1/VIF  
      -------------+----------------------
      cd |      5.30    0.188648
      np |      7.01    0.142589
      c.cd#np |      6.86    0.145711
      1.generation |      4.96    0.201701
      generation#c.np |      5.00    0.199883
      ap |     43.85    0.022808
      c.ap#c.ap |     13.40    0.074635
      transition |      1.20    0.833749
      ibc |     26.93    0.037131
       seasonality |      1.21    0.823164
      -------------+----------------------
          Mean VIF |     11.57
      and removing ibc:
      Code:
      .    vif,unc
      
          Variable |       VIF       1/VIF  
      -------------+----------------------
      cd |      4.95    0.201988
      np |      6.45    0.155069
      c.cd#c.np |      6.72    0.148847
      1.generation |      4.79    0.208685
      generation#np|      5.00    0.199905
      ap |     20.89    0.047872
      c.ap#c.ap |     13.32    0.075051
      transition |      1.19    0.839882
      seasonality |      1.21    0.826354
      -------------+----------------------
          Mean VIF |      7.17
      Is there any paper I can cite that shows there is no concern about high VIF in models with interactions?
      What's your idea about this results?

      Comment


      • #4
        Multicollinearity is either
        1. not a problem, in case you get sufficiently precise estimates;
        2. or a problem that you can resolved only by collecting more data, in case that you cannot estimate precisely what you are interested in.

        Comment


        • #5
          Originally posted by Joro Kolev View Post
          Multicollinearity is either
          1. not a problem, in case you get sufficiently precise estimates;
          2. or a problem that you can resolved only by collecting more data, in case that you cannot estimate precisely what you are interested in.
          Thank you for your response Joro.
          What is the measure of "precise estimates"? how can I make sure that my estimates are precise?

          p.s.: when I add month and year dummies to the model the VIF becomes 7.70...

          Comment


          • #6
            MIchael:
            see examples # 12 and 13 in -regress postestimation- entry, Stata .pdf manual-
            In addition, for a humourous explanantion of multicollineraity, see Chapter 23 in https://www.hup.harvard.edu/catalog....=9780674175440
            Kind regards,
            Carlo
            (Stata 19.0)

            Comment


            • #7
              Thanks Carlo.
              The link to hup is not working. I got an error.

              Comment


              • #8
                Michael:
                my bad; I did not check the link.
                The following one shoud work:
                https://www.amazon.com/Course-Econom.../dp/0674175441
                Kind regards,
                Carlo
                (Stata 19.0)

                Comment


                • #9
                  Thank you very much!

                  Comment

                  Working...
                  X