Hello
is there a code to get or generate(simulate) a similar data based on the existing data.
thanks
is there a code to get or generate(simulate) a similar data based on the existing data.
thanks
search jnsn
* Example generated by -dataex-. For more info, type help dataex clear input str41 country double(latitude longitude) float(head urban female age yearofbirth marital education) "ARE" -11.7108 43.24825 1 1 0 18 1985 1 4 "ARE" -11.85792 43.39094 0 0 1 18 1985 1 3 "ARE" -11.86671 43.3963 1 0 0 28 1975 1 4 "ARE" -11.86678 43.49342 0 1 1 30 1973 1 4 "ARE" -11.60353 43.36902 1 0 0 18 1985 1 3 "ARE" -11.67971 43.27585 0 0 0 18 1985 1 3 "ARE" -11.69256 43.25417 0 1 0 45 1958 4 1 "ARE" -11.70818 43.2498 1 1 0 18 1985 1 4 "ARE" -11.69469 43.41869 0 0 0 21 1982 1 2 "ARE" -11.87008 43.4938 1 1 1 40 1963 2 1 "ARE" -11.71414 43.42326 0 0 0 60 1943 2 1 "ARE" -11.85266 43.34328 1 0 0 40 1963 2 1 "ARE" -11.60293 43.37102 0 0 1 20 1983 1 2 "ARE" -11.88072 43.43332 0 0 1 36 1967 2 1 "ARE" -11.75045 43.25045 0 0 1 60 1943 2 1 "ARE" -11.69383 43.25383 1 1 0 30 1973 1 7 "ARE" -11.88087 43.43171 0 0 0 18 1985 1 2 "ARE" -11.73903 43.23956 1 1 0 27 1976 1 2 "ARE" -11.91004 43.45481 0 0 0 35 1968 2 1 "ARE" -11.65126 43.28531 0 0 1 27 1976 2 1 "ARE" -11.85213 43.42586 0 0 1 18 1985 2 1 "ARE" -11.69311 43.25381 0 1 1 26 1977 4 1 "ARE" -11.74454 43.24083 0 1 1 18 1985 1 3 "ARE" -11.73498 43.26755 1 0 1 60 1943 5 1 "ARE" -11.91373 43.49727 0 0 1 19 1984 1 2 "ARE" -11.50367 43.38698 1 1 0 39 1964 2 3 "ARE" -11.84924 43.31779 0 0 1 29 1974 2 3 "ARE" -11.85166 43.42765 1 0 1 42 1961 5 1 "ARE" -11.73754 43.25216 0 0 1 59 1944 2 1 "ARE" -11.85891 43.39177 0 0 0 49 1954 2 1 "ARE" -11.69274 43.2537 0 1 1 55 1948 4 1 "ARE" -11.69157 43.2548 1 1 0 38 1965 2 6 "ARE" -11.64753 43.39556 1 0 1 50 1953 4 1 "ARE" -11.88863 43.40805 0 0 0 47 1956 2 2 "ARE" -11.88742 43.40673 1 0 0 62 1941 2 1 "ARE" -11.85351 43.42695 0 0 1 58 1945 5 1 "ARE" -11.71981 43.26424 1 0 0 21 1982 1 4 "ARE" -11.65853 43.2899 0 1 0 23 1980 1 2 "ARE" -11.69486 43.41714 1 0 1 60 1943 4 1 "ARE" -11.71445 43.42279 0 0 0 20 1983 1 2 "ARE" -11.74405 43.24277 0 1 1 35 1968 4 1 "ARE" -11.56513 43.27083 1 1 1 60 1943 4 1 "ARE" -11.66373 43.27118 0 1 1 28 1975 2 2 "ARE" -11.8516 43.34042 1 0 1 46 1957 2 1 "ARE" -11.70247 43.25217 1 1 0 25 1978 2 3 "ARE" -11.85817 43.44834 1 0 1 28 1975 3 1 "ARE" -11.6492 43.28407 0 0 1 35 1968 2 2 "ARE" -11.86664 43.49059 0 1 1 19 1984 1 3 "ARE" -11.64689 43.3949 0 0 1 22 1981 2 2 "ARE" -11.5462 43.38869 0 0 0 30 1973 2 1 "ARE" -11.84815 43.3186 0 0 1 65 1938 2 1 "ARE" -11.73941 43.24987 0 0 1 42 1961 2 1 "ARE" -11.64958 43.2842 1 0 1 50 1953 2 1 "ARE" -11.68033 43.27621 0 0 0 30 1973 1 3 "ARE" -11.71141 43.24925 1 1 0 44 1959 4 1 "ARE" -11.50382 43.38697 1 1 0 40 1963 4 2 "ARE" -11.85045 43.31834 0 0 1 55 1948 2 1 "ARE" -11.64998 43.28463 1 0 1 60 1943 4 1 "ARE" -11.85431 43.34028 0 0 0 23 1980 1 4 "ARE" -11.69753 43.25393 1 1 0 43 1960 2 7 "ARE" -11.6037 43.36958 0 0 0 45 1958 2 1 "ARE" -11.65626 43.28934 0 1 1 45 1958 2 2 "ARE" -11.60386 43.3701 1 0 1 28 1975 2 1 "ARE" -11.87734 43.40853 0 0 1 33 1970 2 3 "ARE" -11.64988 43.28502 1 0 0 20 1983 1 4 "ARE" -11.56465 43.27067 1 1 0 37 1966 1 2 "ARE" -11.50311 43.38818 0 1 1 20 1983 1 4 "ARE" -11.7519 43.25198 0 0 0 40 1963 2 1 "ARE" -11.69407 43.41896 1 0 1 22 1981 2 1 "ARE" -11.85205 43.34133 0 0 1 34 1969 2 2 "ARE" -11.6022 43.37045 1 0 1 30 1973 2 1 "ARE" -11.64773 43.39732 1 0 0 25 1978 2 3 "ARE" -11.8367 43.31347 0 0 1 63 1940 5 1 "ARE" -11.5658 43.27178 1 1 1 33 1970 1 5 "ARE" -11.70702 43.25002 0 1 1 49 1954 2 1 "ARE" -11.71207 43.25108 0 1 1 34 1969 2 2 "ARE" -11.80552 43.27995 0 1 0 23 1980 1 2 "ARE" -11.7499 43.25055 1 0 1 28 1975 2 1 "ARE" -11.73746 43.25236 1 0 1 19 1984 1 3 "ARE" -11.71018 43.25703 0 1 0 21 1982 1 5 "ARE" -11.60445 43.37008 1 0 1 19 1984 2 1 "ARE" -11.73924 43.252 0 0 0 40 1963 2 1 "ARE" -11.69697 43.25345 0 1 0 37 1966 2 2 "ARE" -11.85242 43.4259 0 0 1 33 1970 2 1 "ARE" -11.68076 43.2756 1 0 1 58 1945 5 1 "ARE" -11.67991 43.27591 0 0 1 54 1949 2 1 "ARE" -11.91072 43.45356 1 0 1 63 1940 5 1 "ARE" -11.65724 43.28977 0 1 1 23 1980 2 1 "ARE" -11.6746 43.2644 1 1 0 40 1963 2 7 "ARE" -11.86532 43.39444 0 0 1 35 1968 4 1 "ARE" -11.65781 43.28765 0 1 0 26 1977 1 1 "ARE" -11.70823 43.24981 1 1 1 30 1973 2 1 "ARE" -11.56432 43.27123 1 1 0 64 1939 2 1 "ARE" -11.85862 43.39246 0 0 0 48 1955 2 1 "ARE" -11.50311 43.38792 0 1 0 42 1961 2 4 "ARE" -11.91133 43.45293 1 0 1 37 1966 2 1 "ARE" -11.71468 43.42195 1 0 0 51 1952 3 1 "ARE" -11.87768 43.40717 1 0 1 28 1975 2 3 "ARE" -11.56494 43.27161 1 1 0 21 1982 1 5 "ARE" -11.71931 43.26345 0 0 1 57 1946 2 1 end
. mata: dat = st_data(., .) . mata: cov = variance(dat[.,2..cols(dat)]) . mata: st_matrix("cov",cov) . mata: m = mean(dat[.,2..cols(dat)]) . mata: st_matrix("m",m) . . qui count . local n = r(N) . . sum Variable | Obs Mean Std. dev. Min Max -------------+--------------------------------------------------------- country | 0 latitude | 100 -11.72968 .1097476 -11.91373 -11.50311 longitude | 100 43.33374 .0768347 43.23956 43.49727 head | 100 .44 .4988877 0 1 urban | 100 .37 .4852366 0 1 -------------+--------------------------------------------------------- female | 100 .56 .4988877 0 1 age | 100 36.35 14.2541 18 65 yearofbirth | 100 1966.65 14.2541 1938 1985 marital | 100 2.13 1.134002 1 5 education | 100 2.06 1.489492 1 7 . reg longitude-female yearofbirth-education Source | SS df MS Number of obs = 100 -------------+---------------------------------- F(6, 93) = 3.63 Model | .111011126 6 .018501854 Prob > F = 0.0028 Residual | .47344186 93 .005090773 R-squared = 0.1899 -------------+---------------------------------- Adj R-squared = 0.1377 Total | .584452987 99 .005903566 Root MSE = .07135 ------------------------------------------------------------------------------ longitude | Coefficient Std. err. t P>|t| [95% conf. interval] -------------+---------------------------------------------------------------- head | -.0005422 .0153166 -0.04 0.972 -.0309578 .0298735 urban | -.0622105 .0161803 -3.84 0.000 -.0943414 -.0300796 female | .0023185 .0160624 0.14 0.886 -.0295783 .0342153 yearofbirth | .001136 .0006609 1.72 0.089 -.0001763 .0024484 marital | .006061 .0090344 0.67 0.504 -.0118795 .0240014 education | -.0035628 .0063164 -0.56 0.574 -.016106 .0089803 _cons | 41.11595 1.30664 31.47 0.000 38.52122 43.71068 ------------------------------------------------------------------------------ . . clear . corr2data latitude longitude head urban female age yearofbirth marital /// > education, n(`n') cov(cov) means(m) double (obs 100) . gen str country = "ARE" . order country, first . . sum Variable | Obs Mean Std. dev. Min Max -------------+--------------------------------------------------------- country | 0 latitude | 100 -11.72968 .1097476 -12.01081 -11.45636 longitude | 100 43.33374 .0768347 43.13199 43.50001 head | 100 .44 .4988877 -1.031292 1.678765 urban | 100 .37 .4852366 -.9998499 1.767055 -------------+--------------------------------------------------------- female | 100 .56 .4988877 -.8446221 2.21753 age | 100 36.35 14.2541 2.581823 70.94985 yearofbirth | 100 1966.65 14.2541 1932.05 2000.418 marital | 100 2.13 1.134002 -.438501 5.031321 education | 100 2.06 1.489492 -.8918127 5.436786 . reg longitude-female yearofbirth-education Source | SS df MS Number of obs = 100 -------------+---------------------------------- F(6, 93) = 3.63 Model | .111011126 6 .018501854 Prob > F = 0.0028 Residual | .473441859 93 .005090773 R-squared = 0.1899 -------------+---------------------------------- Adj R-squared = 0.1377 Total | .584452986 99 .005903566 Root MSE = .07135 ------------------------------------------------------------------------------ longitude | Coefficient Std. err. t P>|t| [95% conf. interval] -------------+---------------------------------------------------------------- head | -.0005422 .0153166 -0.04 0.972 -.0309578 .0298735 urban | -.0622105 .0161803 -3.84 0.000 -.0943414 -.0300796 female | .0023185 .0160624 0.14 0.886 -.0295783 .0342153 yearofbirth | .001136 .0006609 1.72 0.089 -.0001763 .0024484 marital | .006061 .0090344 0.67 0.504 -.0118795 .0240014 education | -.0035628 .0063164 -0.56 0.574 -.016106 .0089803 _cons | 41.11595 1.30664 31.47 0.000 38.52122 43.71068 ------------------------------------------------------------------------------
Comment