Hello,
I am working on an ologit model that is exploring changes in a survey respondent's satisfaction with their financial condition based in part on their income levels related to Medicaid and tax credits/subsidies in health benefit exchanges. Here is my model:
The next step that I am working on is to look at the results of margins by specific income level year groupings across 3 income eligibility groups and years. The first command yields results:
But when I move to my next income group, I get a not estimable result that I cannot figure out:
Previously, about a month ago, I ran this same ologit model and marings commands which produced results. The only differences between then and now are: 1) I updated Stata from 16 to 17 and 2) deleted 83 observations due to responses being out of range with do not know and prefer not to answer. Any insight is appreciated.
I am working on an ologit model that is exploring changes in a survey respondent's satisfaction with their financial condition based in part on their income levels related to Medicaid and tax credits/subsidies in health benefit exchanges. Here is my model:
Code:
. svy: ologit satisfact_fin_con mcaid_exp eng_d eng_d_mexp gender i.ethnicity i.education c.income2012##c.income2012 c.income2015##c.income2015 c.income2018##c.income2018 i.living_arr_and_dep_kids full_time_employment unemployed retirement i.state h1 hi_under55 Y2012 Y2015 Y2018 (running ologit on estimation sample) Survey: Ordered logistic regression Number of strata = 1 Number of obs = 14,221 Number of PSUs = 14,221 Population size = 13,787.025 Design df = 14,220 F(75, 14146) = . Prob > F = . ----------------------------------------------------------------------------------------------------------------------- | Linearized satisfact_fin_con | Coefficient std. err. t P>|t| [95% conf. interval] ------------------------------------------------------+---------------------------------------------------------------- mcaid_exp | .1646864 .1034007 1.59 0.111 -.0379924 .3673652 eng_d | -.0615908 .159987 -0.38 0.700 -.3751862 .2520047 eng_d_mexp | -.0904735 .1796805 -0.50 0.615 -.4426709 .2617238 gender | -.1703788 .0374672 -4.55 0.000 -.2438193 -.0969382 | ethnicity | Black non-Hispanic | -.2072806 .0694167 -2.99 0.003 -.3433465 -.0712147 Hispanic any race | .1789224 .0930218 1.92 0.054 -.0034126 .3612574 Asian non-Hispanic | -.0258495 .1193996 -0.22 0.829 -.2598883 .2081893 Other non-Hispanic (American Indian, Other, 2+ et..) | -.3363047 .1096566 -3.07 0.002 -.551246 -.1213635 | education | HS Grad | .2893673 .1314109 2.20 0.028 .0317848 .5469497 Some College | .132868 .1304964 1.02 0.309 -.1229221 .3886581 College Grad | .2768922 .1345936 2.06 0.040 .0130712 .5407133 Graduate Degree | .3131309 .1382932 2.26 0.024 .0420582 .5842037 | income2012 | .000023 2.03e-06 11.34 0.000 .000019 .0000269 | c.income2012#c.income2012 | -4.62e-11 8.22e-12 -5.62 0.000 -6.23e-11 -3.01e-11 | income2015 | .0000285 2.15e-06 13.27 0.000 .0000243 .0000327 | c.income2015#c.income2015 | -7.30e-11 9.29e-12 -7.85 0.000 -9.12e-11 -5.48e-11 | income2018 | .0000307 2.29e-06 13.39 0.000 .0000262 .0000351 | c.income2018#c.income2018 | -7.55e-11 1.01e-11 -7.50 0.000 -9.53e-11 -5.58e-11 | living_arr_and_dep_kids | 1 adult and kid(s) | .087429 .138907 0.63 0.529 -.1848469 .3597049 multiple adults 0 kids | -.1008708 .0517836 -1.95 0.051 -.2023734 .0006318 multiple adults and kid(s) | -.4064206 .0641402 -6.34 0.000 -.5321439 -.2806974 | full_time_employment | -.0373899 .0474741 -0.79 0.431 -.1304452 .0556655 unemployed | -.5802745 .0823599 -7.05 0.000 -.7417108 -.4188382 retirement | .6634571 .0480713 13.80 0.000 .569231 .7576831 | state | Alaska | .1538897 .1760655 0.87 0.382 -.1912216 .4990011 Arizona | .1245345 .1930407 0.65 0.519 -.2538505 .5029195 Arkansas | -.2068757 .1744907 -1.19 0.236 -.5489002 .1351489 California | -.0172462 .1913838 -0.09 0.928 -.3923835 .3578911 Colorado | -.1777846 .1807532 -0.98 0.325 -.5320844 .1765152 Connecticut | -.1672435 .196774 -0.85 0.395 -.5529464 .2184593 Delaware | -.1971523 .1927451 -1.02 0.306 -.5749579 .1806534 District of Columbia | .1646567 .2132393 0.77 0.440 -.2533203 .5826337 Florida | .0692714 .1685594 0.41 0.681 -.2611271 .3996699 Georgia | -.1744549 .1670467 -1.04 0.296 -.5018883 .1529784 Hawaii | -.0304913 .2121641 -0.14 0.886 -.4463607 .3853781 Idaho | .2478786 .1989769 1.25 0.213 -.1421422 .6378994 Illinois | -.2319925 .1820535 -1.27 0.203 -.5888411 .1248562 Indiana | .2669032 .1806815 1.48 0.140 -.0872561 .6210625 Iowa | .2057265 .1849483 1.11 0.266 -.1567965 .5682494 Kansas | -.1776296 .1708918 -1.04 0.299 -.5125999 .1573407 Kentucky | .1653678 .1799308 0.92 0.358 -.1873202 .5180557 Louisiana | -.1946951 .1729925 -1.13 0.260 -.5337829 .1443927 Maine | .0247627 .1701336 0.15 0.884 -.3087214 .3582468 Maryland | -.3649838 .1906788 -1.91 0.056 -.7387392 .0087716 Massachusetts | -.1235645 .1991212 -0.62 0.535 -.5138682 .2667391 Michigan | .2547052 .1898303 1.34 0.180 -.117387 .6267973 Minnesota | .0610862 .1978241 0.31 0.757 -.3266749 .4488473 Mississippi | -.0527727 .1631322 -0.32 0.746 -.3725332 .2669878 Missouri | .1649411 .1774707 0.93 0.353 -.1829246 .5128069 Montana | .2149899 .1628347 1.32 0.187 -.1041875 .5341673 Nebraska | .2146402 .1744895 1.23 0.219 -.127382 .5566624 Nevada | .1408843 .177398 0.79 0.427 -.206839 .4886076 New Hampshire | .1156075 .1859118 0.62 0.534 -.2488041 .480019 New Jersey | -.3679061 .1867893 -1.97 0.049 -.7340376 -.0017746 New Mexico | .0306712 .1895149 0.16 0.871 -.3408028 .4021451 New York | .0323792 .187452 0.17 0.863 -.3350512 .3998096 North Carolina | .0651057 .1677474 0.39 0.698 -.2637011 .3939126 North Dakota | .1516464 .178594 0.85 0.396 -.1984212 .501714 Ohio | .0250083 .1848407 0.14 0.892 -.3373037 .3873202 Oklahoma | .0063428 .1657666 0.04 0.969 -.3185814 .331267 Oregon | .0246889 .1664366 0.15 0.882 -.3015486 .3509263 Pennsylvania | -.2375424 .1765484 -1.35 0.178 -.5836004 .1085155 Rhode Island | .0370566 .1809652 0.20 0.838 -.3176589 .391772 South Carolina | -.0746881 .1667144 -0.45 0.654 -.4014701 .2520938 South Dakota | .3004683 .1699385 1.77 0.077 -.0326333 .6335699 Tennessee | .1044944 .1737673 0.60 0.548 -.2361123 .4451011 Texas | -.0364918 .1742135 -0.21 0.834 -.3779731 .3049895 Utah | .1578976 .1832772 0.86 0.389 -.2013496 .5171449 Vermont | .1289547 .1882139 0.69 0.493 -.2399691 .4978786 Virginia | -.1747913 .1764976 -0.99 0.322 -.5207497 .1711672 Washington | .0195483 .169052 0.12 0.908 -.3118158 .3509124 West Virginia | -.0328476 .1762213 -0.19 0.852 -.3782645 .3125693 Wisconsin | -.0327713 .1753222 -0.19 0.852 -.3764257 .3108831 Wyoming | .172028 .1554212 1.11 0.268 -.1326179 .4766738 | h1 | -.4917407 .0686699 -7.16 0.000 -.6263427 -.3571387 hi_under55 | .4188247 .5985703 0.70 0.484 -.7544513 1.592101 Y2012 | -.112137 .1479055 -0.76 0.448 -.4020511 .1777772 Y2015 | .0166794 .1310208 0.13 0.899 -.2401386 .2734974 Y2018 | 0 (omitted) ------------------------------------------------------+---------------------------------------------------------------- /cut1 | -.2341094 .7699423 -1.743297 1.275078 /cut2 | 1.196162 .7701736 -.3134793 2.705803 /cut3 | 3.500011 .771525 1.987722 5.012301 -----------------------------------------------------------------------------------------------------------------------
Code:
. margins if income2012<26614.2, dydx(income2012) predict(xb) Average marginal effects Number of strata = 1 Number of obs = 10,465 Number of PSUs = 14,221 Population size = 13,787.025 Model VCE: Linearized Design df = 14,220 Expression: Linear prediction (cutpoints excluded), predict(xb) dy/dx wrt: income2012 ------------------------------------------------------------------------------ | Delta-method | dy/dx std. err. t P>|t| [95% conf. interval] -------------+---------------------------------------------------------------- income2012 | .0000228 2.00e-06 11.41 0.000 .0000189 .0000267 ------------------------------------------------------------------------------
Code:
. margins if income2012>26614.2 & income2012<77142.61, dydx(income2012) predict(xb) Average marginal effects Number of strata = 1 Number of obs = 1,198 Number of PSUs = 14,221 Population size = 13,787.025 Model VCE: Linearized Design df = 14,220 Expression: Linear prediction (cutpoints excluded), predict(xb) dy/dx wrt: income2012 ------------------------------------------------------------------------------ | Delta-method | dy/dx std. err. t P>|t| [95% conf. interval] -------------+---------------------------------------------------------------- income2012 | . (not estimable) ------------------------------------------------------------------------------
Comment